首页> 外文期刊>The Journal of biological chemistry >Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase
【24h】

Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase

机译:姜黄素合酶β-酮酸脱羧缩合机理的结构和生化阐明

获取原文
           

摘要

The typical reaction catalyzed by type III polyketide synthases (PKSs) is a decarboxylative condensation between acyl-CoA (starter substrate) and malonyl-CoA (extender substrate). In contrast, curcumin synthase 1 (CURS1), which catalyzes curcumin synthesis by condensing feruloyl-CoA with a diketide-CoA, uses a β-keto acid (which is derived from diketide-CoA) as an extender substrate. Here, we determined the crystal structure of CURS1 at 2.32 ? resolution. The overall structure of CURS1 was very similar to the reported structures of type III PKSs and exhibited the αβαβα fold. However, CURS1 had a unique hydrophobic cavity in the CoA-binding tunnel. Replacement of Gly-211 with Phe greatly reduced the enzyme activity. The crystal structure of the G211F mutant (at 2.5 ? resolution) revealed that the side chain of Phe-211 occupied the hydrophobic cavity. Biochemical studies demonstrated that CURS1 catalyzes the decarboxylative condensation of a β-keto acid using a mechanism identical to that for normal decarboxylative condensation of malonyl-CoA by typical type III PKSs. Furthermore, the extender substrate specificity of CURS1 suggested that hydrophobic interaction between CURS1 and a β-keto acid may be important for CURS1 to use an extender substrate lacking the CoA moiety. From these results and a modeling study on substrate binding, we concluded that the hydrophobic cavity is responsible for the hydrophobic interaction between CURS1 and a β-keto acid, and this hydrophobic interaction enables the β-keto acid moiety to access the catalytic center of CURS1 efficiently.
机译:III型聚酮合成酶(PKS)催化的典型反应是酰基 - COA(起始底物)和丙二酰基-COA(延伸剂底物)之间的脱羧缩合。相反,姜黄素合成酶1(Curs1),其通过用Diketide-CoA缩合Foruloyl-CoA来催化姜黄素合成,使用β-酮酸(其衍生自二烷基-CoA)作为延伸基底。在这里,我们确定了2.32的Crys1的晶体结构?解析度。 Curs1的总体结构与III型PKS的报告结构非常相似,并表现出αβαβα折叠。然而,COA结合隧道中的CURS1具有独特的疏水腔。用PHE替换GLY-211大大降低了酶活性。 G211F突变体的晶体结构(在2.5?分辨率下)显示PHE-211的侧链占据疏水腔。生化研究证明,使用与典型III PKSS的正常脱羧缩合相同的机理,Curs1催化β-酮酸的脱羧缩合。此外,Curs1的扩张基质特异性表明,Curs1和β-酮酸之间的疏水相互作用对于使用缺乏COA部分的增量基材可能是重要的。从这些结果和对底物结合的建模研究,我们得出结论,疏水性腔对Curs1和β-酮酸之间的疏水相互作用负责,并且这种疏水性相互作用使得β-酮酸部分能够进入催化中心的Curs1有效率的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号