...
首页> 外文期刊>Atmospheric chemistry and physics >Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and Osub3/sub in the Arctic
【24h】

Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and Osub3/sub in the Arctic

机译:在春天兄弟兄弟和o 3 在北极吹雪海盐气溶胶的影响

获取原文
           

摘要

We use the GEOS-Chem chemical transport model to examine the influence of bromine release from blowing-snow sea salt aerosol (SSA) on springtime bromine activation and O3 depletion events (ODEs) in the Arctic lower troposphere. We evaluate our simulation against observations of tropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment) and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3?years (2007–2009), as well as against surface observations of O3. We conduct a simulation with blowing-snow SSA emissions from first-year sea ice (FYI; with a surface snow salinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snow salinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surface snow relative to seawater. This simulation captures the magnitude of observed March–April GOME-2 and OMI VCDtropo to within 17 %, as well as their spatiotemporal variability (r=0.76–0.85). Many of the large-scale bromine explosions are successfully reproduced, with the exception of events in May, which are absent or systematically underpredicted in the model. If we assume a lower salinity on MYI (0.01 psu), some of the bromine explosions events observed over MYI are not captured, suggesting that blowing snow over MYI is an important source of bromine activation. We find that the modeled atmospheric deposition onto snow-covered sea ice becomes highly enriched in bromide, increasing from enrichment factors of ~5 in September–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment in deposition could enable blowing-snow-induced halogen activation to propagate into May and might explain our late-spring underestimate in VCDtropo. We estimate that the atmospheric deposition of SSA could increase snow salinity by up to 0.04 psu between February and April, which could be an important source of salinity for surface snow on MYI as well as FYI covered by deep snowpack. Inclusion of halogen release from blowing-snow SSA in our simulations decreases monthly mean Arctic surface O3 by 4–8 ppbv (15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce a transport event of depleted O3 Arctic air down to 40° N observed at many sub-Arctic surface sites in early April 2007. While our simulation captures 25 %–40 % of the ODEs observed at coastal Arctic surface sites, it underestimates the magnitude of many of these events and entirely misses 60 %–75 % of ODEs. This difficulty in reproducing observed surface ODEs could be related to the coarse horizontal resolution of the model, the known biases in simulating Arctic boundary layer exchange processes, the lack of detailed chlorine chemistry, and/or the fact that we did not include direct halogen activation by snowpack chemistry.
机译:我们使用Geos-Chem化学传输模型来检查鲑鱼释放溴释放的影响,以春天的溴激活和O3耗尽事件(ODES)在北极较低的对流层中的繁殖溴激活和O3耗尽事件(SSA)。我们评估我们对来自Gome-2(第二个全球臭氧监测实验)和臭氧监测仪器(OMI)星期载器械(ozone监测仪器(ozone)星载仪器的对象博罗垂直柱密度(vcdtropo)的仿真3?年(2007-2009)以及反对o3的表面观察。我们从第一年海冰(FYI;含有0.1psu)和多年海冰(Myi)的吹雪SSA排放进行了模拟,假设是一个因素海水表面雪的5种溴化物富集。该模拟捕捉到3月至4月Gome-2和OMI VCDTropo的幅度在17%以内,以及它们的时空变异性(R = 0.76-0.85)。许多大型溴爆炸成功转载,除了5月份的事件外,在模型中不存在或系统地伪造。如果我们假设对MyI的较低盐度(0.01 psu),则没有捕获在Myi上观察到的一些溴爆炸事件,表明在Myi上吹雪是溴激活的重要来源。我们发现,在溴化物中,将大气沉积模型沉积在溴化物中高度富集,从5月至2月至10日至10日至10日至60年的富集因子增加,与新鲜下降的雪的成分观察一致。我们建议沉积的这种渐进性富集能够使吹雪诱导的卤素激活蔓延到5月,并可能解释我们在VCDTropo中的春季低估。我们估计SSA的大气沉积可以在2月和4月之间提高雪盐度高达0.04psu,这可能是Myi上表面雪以及由深层积雪覆盖的FYI的一个重要盐度来源。在我们的模拟中将卤素释放从吹雪SSA中释放到3月份的月平均值降低4-8个PPBV(15%-30%)和4月8-14 PPBV(30%-40%)。我们在2007年4月初在许多亚北极地表位点观察到耗尽O3北极空气的运输事件。虽然我们的模拟捕获了在沿海北极地表位点观察到的25%-40%的杂散,但它低估了许多这些事件的幅度,并完全错过了ODES的60%-75%。再现观察到的表面臭盘的这种困难可能与模型的粗略水平分辨率有关,所知的偏置在模拟北极边界层交换过程中,缺乏详细的氯化学,和/或我们不包括直接卤素激活的事实通过积雪化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号