...
首页> 外文期刊>The Cryosphere >A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
【24h】

A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska

机译:一种分布式温度分析方法,用于评估阿拉斯加不连续永久冻土区的地下温度空间变异性

获取原文
           

摘要

Soil temperature has been recognized as a property that strongly influences a myriad of hydro-biogeochemical processes and reflects how various properties modulate the soil thermal flux. In spite of its importance, our ability to acquire soil temperature data with high spatial and temporal resolution and coverage is limited because of the high cost of equipment, the difficulties of deployment, and the complexities of data management. Here we propose a new strategy that we call distributed temperature profiling (DTP) for improving the characterization and monitoring near-surface thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We developed a prototype DTP system, which consists of inexpensive, low-impact, low-power, and vertically resolved temperature probes that independently and autonomously record soil temperature. The DTP system concept was tested by moving sequentially the system across the landscape to identify near-surface permafrost distribution in a discontinuous permafrost environment near Nome, Alaska, during the summertime. Results show that the DTP system enabled successful acquisition of vertically resolved profiles of summer soil temperature over the top 0.8 m at numerous locations. DTP also enabled high-resolution identification and lateral delineation of near-surface permafrost locations from surrounding zones with no permafrost or deep permafrost table locations overlain by a perennially thawed layer. The DTP strategy overcomes some of the limitations associated with – and complements the strengths of – borehole-based soil temperature sensing as well as fiber-optic distributed temperature sensing (FO-DTS) approaches. Combining DTP data with co-located topographic and vegetation maps obtained using unmanned aerial vehicle (UAV) and electrical resistivity tomography (ERT) data allowed us to identify correspondences between surface and subsurface property distribution and in particular between topography, vegetation, shallow soil properties, and near-surface permafrost. Finally, the results highlight the considerable value of the newly developed DTP strategy for investigating the significant variability in and complexity of subsurface thermal and hydrological regimes in discontinuous permafrost regions.
机译:土壤温度已被认为是强烈影响毒性生物地球化学过程的遗传性的性质,并反映各种性能如何调节土壤热通量。尽管重要的是,由于设备的高成本,部署困难以及数据管理的复杂性,我们获得具有高空间和时间分辨率和覆盖率的土壤温度数据和覆盖的能力。在这里,我们提出了一种新的策略,我们通过使用前所未有的横向和垂直分布的温度测量来提高分布式温度分析(DTP)来改善表征和监测近表面热性能。我们开发了一种原型DTP系统,包括廉价,低冲击,低功耗和垂直解决的温度探头,可独立地和自主地记录土壤温度。通过横跨景观的系统移动来测试DTP系统概念,以识别在夏季诺姆,阿拉斯加附近的不连续多年冻土环境中的近表面Permafrost分布。结果表明,DTP系统使能够在众多位置的顶部0.8米上成功地获取夏季土壤温度的垂直解决曲线。 DTP还使高分辨率识别和横向描绘与周围区域的近表面永久冻土位置,没有永久冻土或深层次冻土台位置通过常年解冻层覆盖。 DTP策略克服了与之相关的一些限制 - 并补充了钻孔基土温感测的优点以及光纤分布式温度传感(FO-DTS)方法。将DTP数据与共同定位的地形和使用无人机(UAV)和电阻率断层扫描(ERET)数据相结合,使我们能够识别表面和地下性质分布之间的对应关系,特别是地形,植被,浅层土壤属性之间的对应关系,和近表面永久冻土。最后,结果突出了新开发的DTP策略的相当价值,以研究在不连续的永久冻土区域中地下热和水文制度的显着变异性和复杂性的显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号