首页> 外文期刊>Physical Review X >Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study
【24h】

Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

机译:异质性对尖峰神经网络中去旋能机制的影响:神经胸壁研究

获取原文
           

摘要

High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.
机译:可以通过简化模型神经元的经常性网络实现高级脑功能,例如存储器,分类或推理。模拟神经形态硬件构成了快速和节能的基板,用于实施技术应用中的这种神经计算架构和神经科学研究。神经网络的功能性能通常依赖于神经活动中的相关程度。在有限网络中,由于共享的预突触输入,相关性通常是不可避免的。最近的理论研究表明,在生物神经网络中丰富的抑制反馈可以积极地抑制这些共享输入的相关性,从而使神经元能够几乎独立地射击。对于尖峰神经元的网络,迄今为止已经明确地明确地证明了抑制反馈的去相关性效果仅针对线性亚多斯动力学的神经元的均质网络进行了明确地证明。然而,理论表明,该效果是一种具有足够抑制反馈的任何系统的一般现象,而不管网络结构的细节或神经元和突触特性。在这里,我们研究了网络异质性对具有非线性的抑制性神经元的稀疏,随机网络的相关性的效果。模拟神经栓 - 硬件系统上这些网络的仿真允许我们通过在存在硬件特异性异质性的情况下通过抑制反馈来测试去相关性的效率。硬件基板的可配置性使我们能够以系统的方式调节异质性的程度。我们选择性地研究共享输入和反复连接对膜电位和尖峰列车相关的影响。我们的结果证实,在具有广泛的重大尾火速率分布的高度异质网络中,抑制反馈也是积极抑制共享输入相关性。根据以前的研究,细胞异质性降低共享输入相关性。然而,总体而言,由于减少有效的负反馈,复发系统中的相关性可以随着异质性的水平而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号