...
首页> 外文期刊>Frontiers in Neural Circuits >Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents
【24h】

Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents

机译:皮质微电路错配否定性和其底层子组件

获取原文
           

摘要

In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
机译:在Neocortex中,感觉事件的神经元处理受到背景的显着影响。例如,感觉皮质中的反应被抑制到重复或冗余的刺激,这一现象称为“刺激特异性适应”(SSA)。然而,在相同刺激是新颖的,或偏离期望的背景下,增加神经元反应。这种增强被称为“偏差检测”(DD)。这种神经反应的背景调制是大脑如何有效地处理感官世界以指导立即和未来行为的基础。值得注意的是,通过减少“失配否定性”(MMN),诸如精神分症(SZ)的一些神经精神病学疾病(MMN),反映了感觉皮质中的SSA和DD组合的脑电图波形,上下文调制缺乏。尽管建立了NMDA受体功能和其他神经调节系统的作用,但是MMN及其底层组分,SSA和DD的精确微电路机制仍然未知。当与动物模型加上时,过去十年的强大精密神经技术的发展具有重大的承诺,以实现新的进展,以了解MMN的神经生物学,以前无法到达空间分辨率。目前,由于可用的广泛遗传工具,啮齿动物模型代表了机械研究的最佳工具。在量化啮齿动物中的人类MMN波形的同时,用于在人类及其潜在的子组件(SSA / DD)中使用的“古怪”范式(SSA / DD)在物种中具有高度可翻译。在这里,我们总结了到目前为止发布的努力,专注于在动物中的皮质测量的SSA和DD,以保持与经典测量的MMN相关的相关性,这具有皮质起源。虽然测量和对比两个组分的机械研究稀疏,但我们合成了来自现有啮齿动物,灵长类动物和人类文学的潜在微电路机制。虽然MMN及其子组件可能反映了多个大脑区域的若干机制,但了解基本微电路机制是了解MMN整体的重要一步。我们假设SSA反映了沿着感官 - 玉米皮质途径的突触发生的适应性,而DD取决于从传入输入继承的SSA,并导致释放来自局部可中性群和NMDA-受体的不同生理学和布线性质产生的非适应神经元。功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号