首页> 外文期刊>International Journal of Image, Graphics and Signal Processing >Design and Analysis of Fuzzy Based Proportional-Integral-Derivative Controller for Elbow-Forearm Rehabilitation Robot
【24h】

Design and Analysis of Fuzzy Based Proportional-Integral-Derivative Controller for Elbow-Forearm Rehabilitation Robot

机译:弯头前臂康复机器人模糊基于比例整体衍生控制器的设计与分析

获取原文
           

摘要

Nowadays, the use of Rehabilitation Robots for stroke patients has been growing rapidly. However, there was a limited scope of using such Rehabilitation Robots for patients suffer from an accidental physical fracture. Since the pain condition of such accidents needs a critical treatment, precise control of such robotic manipulators is mandatory. This paper presents the design and control of the Elbow-Forearm Rehabilitation Robot by considering the pain level of the patient. This design consists of the mechatronic design processes including mechanical design, controller design, and Virtual prototyping using ADAMS-MATLAB Co-simulation. The pain level is estimated using three parameters i.e the patient general condition, the muscle strain, and the duration of exercise from the beginning of rehabilitation. Based on these three input parameters, the manipulator's desired range of motion has been determined using the Fuzzy Logic System. The output of this fuzzy logic system would be an input to the main control system. ADAMS-MATLAB Co-simulation is carried out based on three reference inputs i.e Step, sinusoidal and the proposed fuzzy reference input. Using step input, we have discussed the step response characteristics of the developed system. The Co-simulation of the ADAMS dynamic model is realized with a 30 degree oscillating motion by providing a sinusoidal input. Finally, using the developed fuzzy reference input, we have done a Co-simulation of ADAMS plant. The simulation result demonstrates that the proposed PID controller with gains Kp=0.001 and Ki=0.01 yields 99.6% of accuracy in the tracking of the reference input as compared to the simulation without introducing controller which has an accuracy of 94.9%. The simulation also shows that derivative gain (Kd) of the PID controller has no effect on the system so that it is over damping system. From the above three simulation schemes, we can conclude that the Elbow-Forearm rehabilitation robot could be controlled as per the desired signal. Since this desired signal is developed from the pain level of the patient, we can say that the system is controlled as per the pain level of the patient.
机译:如今,使用康复机器人用于中风患者的迅速增长。然而,利用这种康复机器人的患者的患者患有意外的物理骨折存在有限的范围。由于此类事故的疼痛状况需要临界治疗,因此必须精确控制这种机器人操纵器是强制性的。本文通过考虑患者的疼痛水平,介绍了肘部前臂康复机器人的设计和控制。该设计包括使用Adams-Matlab共模的机电设计过程,包括机械设计,控制器设计和虚拟原型设计。使用三个参数估计疼痛水平,即患者一般情况,肌肉菌株以及从康复开始的运动持续时间。基于这三个输入参数,使用模糊逻辑系统确定了机械手所需的运动范围。该模糊逻辑系统的输出将是主控制系统的输入。基于三个参考输入I.E步骤,正弦波和建议的模糊参考输入进行ADAMS-MATLAB共模。使用步骤输入,我们已经讨论了开发系统的步骤响应特性。通过提供正弦输入,通过30度振荡运动实现ADAMS动态模型的共模。最后,使用开发的模糊参考输入,我们已经完成了ADAMS工厂的共同仿真。仿真结果表明,与仿真相比,具有增益KP = 0.001和ki = 0.01的所提出的PID控制器在跟踪参考输入中的准确性的高度为99.6%,而无需引入控制器的精度为94.9%。模拟还示出了PID控制器的导数增益(KD)对系统没有影响,使得它是过度阻尼系统。从上述三种仿真方案中,我们可以得出结论,可以根据所需信号控制弯头前臂康复机器人。由于这种所需信号是从患者的疼痛水平产生的,因此我们可以说该系统根据患者的疼痛水平控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号