...
首页> 外文期刊>Advanced Science >Tuning the Photoresponse of Nano‐Heterojunction: Pressure‐Induced Inverse Photoconductance in Functionalized WO 3 Nanocuboids
【24h】

Tuning the Photoresponse of Nano‐Heterojunction: Pressure‐Induced Inverse Photoconductance in Functionalized WO 3 Nanocuboids

机译:调整纳米异质结的光响应:压力诱导的官能化WO 3纳米uphoids中的逆光电电导

获取原文
           

摘要

Inverse photoconductivity (IPC) is a unique photoresponse behavior that exists in few photoconductors in which electrical conductivity decreases with irradiation, and has great potential applications in the development of photonic devices and nonvolatile memories with low power consumption. However, it is still challenging to design and achieve IPC in most materials of interest. In this study, pressure‐driven photoconductivity is investigated in n‐type WO 3 nanocuboids functionalized with p‐type CuO nanoparticles under visible illumination and an interesting pressure‐induced IPC accompanying a structural phase transition is found. Native and structural distortion induced oxygen vacancies assist the charge carrier trapping and favor the persistent positive photoconductivity beyond 6.4 GPa. The change in photoconductivity is mainly related to a phase transition and the associated changes in the bandgap, the trapping of charge carriers, the WO 6 octahedral distortion, and the electron–hole pair recombination process. A unique reversible transition from positive to inverse photoconductivity is observed during compression and decompression. The origin of the IPC is intimately connected to the depletion of the conduction channels by electron trapping and the chromic property of WO 3 . This synergistic rationale may afford a simple and powerful method to improve the optomechanical performance of any hybrid material.
机译:逆光电导性(IPC)是唯一的光电导电器行为,其存在于少量光电导体中,其中电导率随着辐射而减小,并且具有巨大的潜在应用在光子器件和具有低功耗的非易失性存储器中的潜在应用。然而,在大多数感兴趣的材料中设计和实现IPC仍然挑战。在该研究中,在可见光照明下用p型CuO纳米颗粒官能化的N型WO 3纳米吡咯中研究了压力驱动的光电导性,并且发现了伴随结构相转变的有趣的压力诱导的IPC。本地和结构性变形诱导的氧空位辅助电荷载体捕获并赞成超过6.4GPa的持续正光电电导光。光电导性的变化主要与相位过渡和带隙的相关变化,电荷载体的俘获,WO 6八面体变形和电子 - 空穴对复合过程。在压缩和减压期间观察到从正到逆光电导性的独特可逆转变。 IPC的来源通过电子捕获和WO 3的铬特性密切连接到导通通道的消耗。这种协同理由可能提供一种简单而强大的方法来提高任何混合材料的光学力学性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号