首页> 外文期刊>Bulletin of the American Physical Society >APS -2017 Annual Meeting of the APS Mid-Atlantic Section- Event - The Investigation of Surface Modification Techniques for Ozone Generators William P. Davis, Daniel E. Guerrero and Jose L. Lopez Department of Physics Seton Hall University, 400 South Orange Avenue South Orange, NJ 07079 USA
【24h】

APS -2017 Annual Meeting of the APS Mid-Atlantic Section- Event - The Investigation of Surface Modification Techniques for Ozone Generators William P. Davis, Daniel E. Guerrero and Jose L. Lopez Department of Physics Seton Hall University, 400 South Orange Avenue South Orange, NJ 07079 USA

机译:APS -2017年APS大西洋中部分会年会-活动-臭氧发生器表面改性技术的研究William P. Davis,Daniel E. Guerrero和Jose L. Lopez Seton Hall大学物理系,南奥兰治大道南400奥兰治,NJ 07079美国

获取原文
           

摘要

Ozone is produced on an industrial scale normally through a dielectric barrier discharge (DBD) plasma reactor, where a high energy electric field propagates between to electrodes separated by a dielectric, with a mixture of pure Oxygen gas (O$_{mathrm{2}})$ and Nitrogen admixture(N$_{mathrm{2}})$ flowing through the gap between the electrodes. Nitrogen itself plays an important role in the concentration of ozone produced from these plasma reactors. While it is known that N$_{mathrm{2}}$ is used as a third body collider, another important yet poorly understood function comes from the nitrogen being added to the feed gas into the reactor. Previous studies indicate that when the N$_{mathrm{2}}$ feed gas is shut off, the ozone concentrations in the gas effluent proceeds to drop gradually over time, indicating that the nitrogen itself is having an effect on the ozone production This experiment aims to investigate, why nitrogen effects the production of ozone, and to investigate if there is any way to produce this effect on different metals including stainless steel, using a nitrogen plasma treatment, to see if they are similar or better results when used as electrodes in a DBD plasma reactor. It will also characterize each electrode based on different parameters including but not limited to Ozone production, SEM and FTIR.
机译:臭氧通常以工业规模通过介电势垒放电(DBD)等离子体反应器生产,在该反应器中,高能电场在纯介电气体(O $ _ {mathrm {2} })$和氮气混合物(N $ _ {mathrm {2}})$穿过电极之间的间隙。氮本身在这些等离子体反应器产生的臭氧浓度中起着重要作用。虽然已知N_ {mathrm {2}} $被用作第三对撞机,但另一个重要但尚未为人所知的功能是将氮气添加到反应器的进料气中。先前的研究表明,关闭N $ {mathrm {2}} $进料气后,废气中的臭氧浓度会随时间逐渐下降,这表明氮气本身对臭氧的产生有影响。该实验旨在调查氮为何会影响臭氧的产生,并研究是否有任何方法使用氮等离子体处理对包括不锈钢在内的不同金属产生这种影响,以查看它们在使用时是否相似或更好的结果。 DBD等离子体反应器中的电极。它还将基于不同的参数来表征每个电极,这些参数包括但不限于臭氧生产,SEM和FTIR。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号