...
首页> 外文期刊>Sensors >A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content
【24h】

A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

机译:集成在微喷头中的自供电,自动边缘边缘电容传感器,用于测量土壤含水量

获取原文
           

摘要

We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.
机译:我们在这里介绍用于测量土壤含水量的自供电和自主边缘场电容传感器的设计和制造。该传感器使用常规的印刷电路板制造,并且包括多孔陶瓷。要读取传感器,我们使用的电路包括一个10 kHz的三角波发生器,一个AC放大器,一个精密整流器和一个微控制器。在性能方面,当多孔陶瓷的体积水含量从3%变为36%时,传感器的电容(在实验室原型中测量)增加至5%,每单位变化的灵敏度为S = 15.5 pF。电容测量的重复性测试表明,θv传感器的均方根误差为0.13%。系统(传感器和信号调理电路)的平均电流消耗小于1.5μA,这表明它适合由能量收集系统供电。我们开发了一个完整的灌溉控制系统,该系统集成了传感器,一个能量收集模块,该能量收集模块由安装在微型洒水喷头顶部的微型发电机和为1 F超级电容器充电的DC / DC转换器电路组成。仅当微型洒水旋转器正在灌溉土壤并且超级电容器在第一次灌溉期间约3小时内完全充电至5 V时,能量收集模块才会运行。第一次灌溉后,在超级电容器充满电的情况下,系统只能由超级电容器供电运行约23天,而不会收集任何能量。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号