首页> 外文期刊>Applied Microbiology >Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester
【24h】

Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester

机译:定量元蛋白质组学突出了嗜热厌氧消化池中未培养型的代谢贡献。

获取原文
           

摘要

In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor.IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.
机译:在这项研究中,我们使用了多种代谢组学方法来表征稳定的工业沼气反应器的微生物群落和活性代谢途径,该反应器以食物垃圾为主要原料,在高温(60°C)和游离氨水平升高的条件下运行(367毫克/升NH3-N)。微生物群落由与蛋白水解细菌蛋白水解副杆菌密切相关的种群强烈支配(占所有16S rRNA扩增子序列的76%)。检测到多个伴有原杆菌的菌株,这在沼气研究中很少探讨其他复杂程度。基因组重建为执行生物质解构和发酵的微生物提供了代谢的见解,包括深分支的双歧杆菌和浮游菌以及候选的“ Atribacteria”门。这些生物质降解物由微生物的协同网络补充,该网络通过与氢营养型产甲烷菌的营养相互作用将关键的发酵中间体(脂肪酸)转化为甲烷。蛋白质组学数据的解释也表明适应高氨水平的甲烷菌属系统型的活性。特别是,我们报道了多种新的系统型,它们被认为是共代谢型乙酸氧化剂,它还发挥了Wood-Ljungdahl途径和脂肪酸的β-氧化成乙酰辅酶A所需的酶的表达。这种排列方式不同于已知的共营养型氧化细菌和为将来的研究提出了一个有趣的假设。这些发现共同提供了对未培养系统型的活跃代谢作用的深入了解,并提出了新的协同关系,这两者都可能有助于沼气反应器的稳定性。通过厌氧消化有机废物产生沼气提供了有吸引力的可再生能源可持续的废物管理策略。对驱动厌氧消化器的微生物群落的全面了解对于确保稳定高效的能源生产至关重要。在这里,我们描述了嗜热沼气反应器中复杂的微生物网络和代谢途径。我们讨论了经常遇到的微生物种群的影响,以及新发现的新型系统型的代谢,在这种稳定的高温系统中,厌氧消化的关键微生物阶段似乎起着不同的作用。特别是,我们拟定了一种新陈代谢方案,其中多个未培养的可氧化乙酸的合成菌能够将乙酸以及长链脂肪酸(通过β-氧化和Wood-Ljundahl途径)合成氧化为氢和二氧化碳,从而产生甲烷随后转化为甲烷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号