首页> 外文期刊>Applied Microbiology >Development of a CRISPR/Cas9 System for Methylococcus capsulatusIn Vivo Gene Editing
【24h】

Development of a CRISPR/Cas9 System for Methylococcus capsulatusIn Vivo Gene Editing

机译:用于荚膜甲基球菌的CRISPR / Cas9系统的体内基因编辑

获取原文
           

摘要

Methanotrophic bacteria play a crucial role in the Earth’s biogeochemical cycle and have the potential to be employed in industrial biomanufacturing processes due to their capacity to use natural gas- and biogas-derived methane as a sole carbon and energy source. Advanced gene-editing systems have the potential to enable rapid, high-throughput methanotrophic genetics and biocatalyst development. To this end, we employed a series of broad-host-range expression plasmids to construct a conjugatable clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing system in Methylococcus capsulatus (Bath). Heterologous coexpression of the Streptococcus pyogenes Cas9 endonuclease and a synthetic single guide RNA (gRNA) showed efficient Cas9 DNA targeting and double-stranded DNA (dsDNA) cleavage that resulted in cell death. We demonstrated effective in vivo editing of plasmid DNA using both Cas9 and Cas9D10A nickase to convert green fluorescent protein (GFP)- to blue fluorescent protein (BFP)-expressing cells with 71% efficiency. Further, we successfully introduced a premature stop codon into the soluble methane monooxygenase (sMMO) hydroxylase component-encoding mmoX gene with the Cas9D10A nickase, disrupting sMMO function. These data provide proof of concept for CRISPR/Cas9-mediated gene editing in M. capsulatus. Given the broad-host-range replicons and conjugation capability of these CRISPR/Cas9 tools, they have potential utility in other methanotrophs and a wide array of Gram-negative microorganisms.IMPORTANCE In this study, we targeted the development and evaluation of broad-host-range CRISPR/Cas9 gene-editing tools in order to enhance the genetic-engineering capabilities of an industrially relevant methanotrophic biocatalyst. The CRISPR/Cas9 system developed in this study expands the genetic tools available to define molecular mechanisms in methanotrophic bacteria and has the potential to foster advances in the generation of novel biocatalysts to produce biofuels, platform chemicals, and high-value products from natural gas- and biogas-derived methane. Further, due to the broad-host-range applicability, these genetic tools may also enable innovative approaches to overcome the barriers associated with genetically engineering diverse, industrially promising nonmodel microorganisms.
机译:甲烷营养细菌在地球的生物地球化学循环中起着至关重要的作用,并且由于具有利用天然气和沼气衍生的甲烷作为唯一碳和能源的能力,因此具有在工业生物制造过程中应用的潜力。先进的基因编辑系统有可能实现快速,高通量的甲烷营养基因和生物催化剂的开发。为此,我们采用了一系列广泛的宿主表达质粒,以在荚膜甲基球菌(Bath)中构建了可缀合的簇状规则间隔的短回文重复序列(CRISPR)/ Cas9基因编辑系统。化脓性链球菌Cas9核酸内切酶和合成的单向导RNA(gRNA)的异源共表达显示有效的Cas9 DNA靶向和双链DNA(dsDNA)裂解,导致细胞死亡。我们展示了使用Cas9和Cas9D10A切口酶对质粒DNA进行有效的体内编辑,可将表达绿色荧光蛋白(GFP)的细胞转化为表达蓝色荧光蛋白(BFP)的细胞,效率为71%。此外,我们成功地用Cas9D10A切口酶将过早的终止密码子引入了可溶性甲烷单加氧酶(sMMO)羟化酶成分编码mmoX基因,破坏了sMMO功能。这些数据为荚膜分枝杆菌中的CRISPR / Cas9介导的基因编辑提供了概念验证。鉴于这些CRISPR / Cas9工具具有广泛的宿主复制子和结合能力,它们在其他甲烷营养菌和多种革兰氏阴性微生物中具有潜在的实用性。重要提示在本研究中,我们针对广泛宿主的开发和评估范围内的CRISPR / Cas9基因编辑工具,目的是增强工业相关甲烷营养生物催化剂的基因工程能力。这项研究中开发的CRISPR / Cas9系统扩展了可用来定义甲烷营养细菌中分子机制的遗传工具,并具有促进新型生物催化剂生产的潜力,这些新型生物催化剂可从天然气中生产生物燃料,平台化学品和高价值产品,和沼气衍生的甲烷。此外,由于具有广泛的宿主适用性,因此这些遗传工具还可以采用创新的方法来克服与遗传工程化多种工业上有前途的非模型微生物相关的障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号