首页> 外文期刊>Applied Microbiology >Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea
【24h】

Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea

机译:东海潮间带硫酸盐依赖的厌氧甲烷氧化的时空格局

获取原文
           

摘要

Methane is a primary greenhouse gas which is responsible for global warming. The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles, and it is considered to be the overriding methane sink in marine ecosystem. However, there have been few studies regarding the role of S-AOM process and the distribution of ANME archaea in intertidal ecosystem. The intertidal zone is a buffer zone between sea and land and plays an important role in global geochemical cycle. In the present study, the abundance, potential methane oxidation rate, and community structure of ANME archaea in the intertidal zone were studied by quantitative PCR, stable isotope tracing method and high-throughput sequencing. The results showed that the potential S-AOM activity ranged from 0 to 0.77?nmol 13CO2 g?1 (dry sediment) day?1. The copy number of 16S rRNA gene of ANME archaea reached 106 ~ 107 copies g?1 (dry sediment). The average contribution of S-AOM to total anaerobic methane oxidation was up to 34.5%, while denitrifying anaerobic methane oxidation accounted for the rest, which implied that S-AOM process was an essential methane sink that cannot be overlooked in intertidal ecosystem. The simulated column experiments also indicated that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.IMPORTANCE The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles. We conducted a research into the spatial-temporal pattern of S-AOM process and the distribution of ANME archaea in coastal sediments collected from the intertidal zone. The results implied that S-AOM process was a methane sink that cannot be overlooked in the intertidal ecosystem. We also found that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.
机译:甲烷是造成全球变暖的主要温室气体。厌氧甲烷化古细菌(ANME)和还原硫酸盐细菌(SRB)催化的硫酸盐依赖性厌氧甲烷氧化(S-AOM)过程是连接全球碳和硫循环的重要环节,被认为是最重要的甲烷沉入海洋生态系统。然而,关于潮间带生态系统中S-AOM过程的作用和ANME古细菌分布的研究很少。潮间带是海洋和陆地之间的缓冲区,在全球地球化学循环中起着重要作用。本研究通过定量PCR,稳定同位素示踪法和高通量测序研究了潮间带ANME古细菌的丰度,潜在的甲烷氧化速率和群落结构。结果表明,潜在的S-AOM活性范围为0至0.77nmol 13CO2 g?1(干沉积物)·天?1。 ANME古细菌的16S rRNA基因的拷贝数达到106〜107拷贝g?1(干沉积物)。 S-AOM对厌氧甲烷总氧化的平均贡献高达34.5%,而反硝化厌氧甲烷氧化的贡献最大,这意味着S-AOM过程是潮间带生态系统中不可忽视的重要甲烷汇。模拟柱实验还表明,ANME古细菌对氧气和优选的厌氧环境条件敏感。这项研究将帮助我们更好地了解全球碳硫循环和减少温室气体排放,并为ANME古细菌的富集引入新的视角。重要厌氧催化的硫酸盐依赖性厌氧甲烷氧化(S-AOM)过程甲烷营养(ANME)古细菌和硫酸盐还原细菌(SRB)是连接全球碳和硫循环的重要纽带。我们研究了S-AOM过程的时空格局和潮间带沿海沉积物中ANME古细菌的分布。结果表明,S-AOM过程是甲烷潮,在潮间带生态系统中不可忽视。我们还发现ANME古细菌对氧气和首选的厌氧环境条件敏感。这项研究将帮助我们更好地了解全球碳硫循环和减少温室气体排放,并为丰富ANME古细菌引入新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号