首页> 外文期刊>BMC Genomics >Gene expression correlated with delay in shell formation in larval Pacific oysters ( Crassostrea gigas ) exposed to experimental ocean acidification provides insights into shell formation mechanisms
【24h】

Gene expression correlated with delay in shell formation in larval Pacific oysters ( Crassostrea gigas ) exposed to experimental ocean acidification provides insights into shell formation mechanisms

机译:基因表达与被暴露于实验性海洋酸化作用的太平洋太平洋牡蛎(Crassostrea gigas)的壳形成延迟有关,提供了壳形成机理的见解

获取原文
           

摘要

Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24?h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO2-acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.
机译:尽管最近有研究表征与牡蛎幼体发育有关的基因表达变化的工作,但首次形成幼体壳的机理仍是未知的。在Crassostrea gigas中,这种壳在受精后的24小时内形成,并且已经证明水化学的变化会导致壳形成的延迟,壳的变形和较高的死亡率。在这项研究中,我们使用与暴露于CO2酸化的海水相关的壳形成延迟来确定与初始壳沉积相关的基因。通过将线性模型拟合到环境和低文石饱和度处理中的基因表达数据,我们能够分离出与初始幼虫壳形成相关的37个带注释的基因,可以将其分类为1)离子转运蛋白,2)壳基质蛋白和3)蛋白酶抑制剂。基因表达数据聚集成共表达网络进一步支持了线性模型的结果,并且还暗示了动力蛋白在初始壳形成过程中作为细胞组分的转运蛋白的重要作用。使用具有高时间分辨率的RNA-Seq方法可以使我们确定牡蛎幼体钙化如何启动的概念模型。这项工作为进一步研究这些鉴定出的基因的遗传变异如何影响经受未来环境变化(例如海洋酸化)的牡蛎种群的适应性提供了基础。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号