首页> 外文期刊>Journal of Remote Sensing & GIS >Modeling Tropospheric Ozone Climatology over Irene (South Africa)Using Retrieved Remote Sensing and Ground-Based Measurement Data
【24h】

Modeling Tropospheric Ozone Climatology over Irene (South Africa)Using Retrieved Remote Sensing and Ground-Based Measurement Data

机译:使用检索的遥感和地面测量数据对艾琳(南非)对流层臭氧气候进行建模

获取原文
       

摘要

The climatology of tropospheric ozone at Irene has been investigated using SHADOZ network data to assess the correlation between the observed seasonal ozone enhancement and meteorological factors. Previous studies identified photochemical sources (biomass burning, biogenic and lightning emissions) as well as dynamic factors (synoptic weather system, stratospheric intrusion) as contributing factors to ozone enhancement observed during Austral spring (October) and Austral summer (February). Recent global increase in temperature due to climate change has raised concern on the impact of such increase on seasonal ozone enhancement over this region. As tropospheric ozone is poorly documented over southern Africa, a few studies have been undertaken to understand the correlation between change in meteorological parameters and tropospheric ozone variation. The objective of this paper is to providing a comprehensive correlation between meteorological parameters and tropospheric ozone concentrations over Irene (South Africa) for the period 1998 to 2013 in order to predict possible change in the concentration of ozone and water vapor as greenhouse gases. To this end correlation analysis has been used to assess annual and seasonal TTO (Total Tropospheric Ozone) variation over different layers up to the tropical tropopause height. Seasonal TTO trends have shown identical seasonal ozone patterns with two maxima occurring in summer and spring respectively. However an increase on ozone concentrations from 55 to 65.6 DU in spring and from 32 to 55 DU in summer have noted in comparison with previous short term study at the same location. This was evidenced by seasonal ozone profiles which showed a sharp seasonal increase of 23 and 14 ppbv in the layer 10-12 km in spring and summer respectively. While autumn profile displays an increase of 12 ppbv, winter profile presents a 6 ppbv decrease at this very layer. The role played by temperature and relative humidity is depicted by the strong correlation existing between both temperature and ozone concentrations from surface: 2 km and 2-4 km and weak correlation in upper layers. In contrast relative humidity shows a weak correlation from surface to 3 km and a strong correlation from 3 km to upper layers. A multiple linear regression model was used to provide seasonal correlation between ozone and temperature and relative humidity. All seasons display strong regression coefficients (0.96.
机译:使用SHADOZ网络数据对艾琳(Irene)对流层臭氧的气候进行了研究,以评估观测到的季节性臭氧增强与气象因素之间的相关性。先前的研究确定了光化学源(生物量燃烧,生物成因和雷电排放)以及动态因素(天气天气系统,平流层侵入)是在春季(十月)和夏季(二月)期间观察到的臭氧增强的贡献因素。由于气候变化,最近全球温度升高,引起了人们对该温度升高对该区域季节性臭氧增强的影响的关注。由于南部非洲对流层臭氧的文献很少,因此已经进行了一些研究以了解气象参数变化与对流层臭氧变化之间的关系。本文的目的是提供1998年至2013年期间艾琳(南非)气象参数与对流层臭氧浓度之间的全面关联,以便预测臭氧和水蒸气作为温室气体的浓度可能发生的变化。为此,相关分析已用于评估直至热带对流层顶高度的不同层上的年度和季节性TTO(总对流层臭氧)变化。 TTO的季节性趋势显示出相同的季节性臭氧模式,分别在夏季和春季出现两个最大值。然而,与先前在同一地点进行的短期研究相比,春季的臭氧浓度从春季的55升至65.6 DU,夏季从32增至55 DU。季节臭氧分布图证明了这一点,该季节臭氧分布在春季和夏季分别在10-12 km层急剧增加了23 ppbv和14 ppbv。秋季剖面显示增加了12 ppbv,冬季剖面显示了在这一层降低了6 ppbv。温度和相对湿度的作用由地表温度和臭氧浓度之间的强相关性(2 km和2-4 km)和上层的弱相关性来描述。相反,相对湿度显示从表面到3 km的相关性较弱,而从3 km到上层的相关性较强。使用多元线性回归模型来提供臭氧与温度和相对湿度之间的季节性相关性。所有季节均显示强回归系数(0.96。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号