首页> 外文期刊>Journal of Pathology Informatics >Deep learning for digital pathology image analysis&58; A comprehensive tutorial with selected use cases
【24h】

Deep learning for digital pathology image analysis&58; A comprehensive tutorial with selected use cases

机译:用于数字病理图像分析的深度学习&58;包含所选用例的综合教程

获取原文
           

摘要

Background&58; Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific "handcrafted" features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a) selecting appropriate magnification, (b) managing errors in annotations in the training (or learning) dataset, and (c) identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, and (ii) DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. Aims&58; This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Results &58; Specifically, in this tutorial on DL for DP image analysis, we show how an open source framework (Caffe), with a singular network architecture, can be used to address&58; (a) nuclei segmentation (F-score of 0.83 across 12,000 nuclei), (b) epithelium segmentation (F-score of 0.84 across 1735 regions), (c) tubule segmentation (F-score of 0.83 from 795 tubules), (d) lymphocyte detection (F-score of 0.90 across 3064 lymphocytes), (e) mitosis detection (F-score of 0.53 across 550 mitotic events), (f) invasive ductal carcinoma detection (F-score of 0.7648 on 50 k testing patches), and (g) lymphoma classification (classification accuracy of 0.97 across 374 images). Conclusion&58; This paper represents the largest comprehensive study of DL approaches in DP to date, with over 1200 DP images used during evaluation. The supplemental online material that accompanies this paper consists of step-by-step instructions for the usage of the supplied source code, trained models, and input data.
机译:背景&58;深度学习(DL)是一种表示学习方法,非常适合数字病理学(DP)中的图像分析挑战。 DP中的各种图像分析任务包括检测和计数(例如,有丝分裂事件),分割(例如,细胞核)和组织分类(例如,癌变与非癌变)。不幸的是,载玻片的制备,跨站点染色和扫描的变化以及供应商平台的问题以及生物学差异(例如疾病的不同等级的呈现)使这些图像分析任务特别具有挑战性。传统方法(其中手动识别特定领域的提示并将其发展为特定任务的“手工制作”功能)可能需要进行广泛的调整以适应这些差异。但是,DL采用了一种更具领域不可知性的方法,将特征发现和实现方式结合在一起,以最大程度地区分感兴趣的类别。尽管DL方法在一些与DP相关的图像分析任务(例如检测和组织分类)中表现良好,但当前可用的开源工具和教程并未提供有关挑战的指导,例如(a)选择适当的放大倍率(b)处理错误训练(或学习)数据集中的注释中,以及(c)标识包含信息丰富的示例的合适训练集。这些基本概念是成功将DL范式成功转换为DP任务所必需的,对于(i)具有最少数字组织学经验的DL专家,以及(ii)具有最少DL经验的DP和图像处理专家而言,这些基础概念并不重要。自己的,因此值得一个专门的教程。目标&58;本文通过七个独特的DP任务(作为用例)来研究这些概念,以阐明产生可比的,并且在许多情况下要优于最新的手工制作的基于特征的分类方法的结果所需的技术。结果&58;具体来说,在有关用于DP图像分析的DL的本教程中,我们展示了如何使用具有单一网络体系结构的开源框架(Caffe)来解决&58; (a)核分割(12,000个核的F分数为0.83),(b)上皮分割(1735个区域的F分数为0.84),(c)肾小管分割(795细管的F分数为0.83),(d )淋巴细胞检测(3064颗淋巴细胞的F分数为0.90),(e)有丝分裂检测(550个有丝分裂事件的F分数为0.53),(f)浸润性导管癌检测(50 k测试斑的F分数为0.7648)和(g)淋巴瘤分类(在374张图像中分类准确度为0.97)。结论&58;本文代表了迄今为止在DP中最大的DL方法综合研究,评估期间使用了1200多个DP图像。本文随附的补充在线材料包括有关如何使用提供的源代码,经过训练的模型和输入数据的逐步说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号