首页> 外文期刊>Journal of caves and karst studies: the National Speleological Society bulletin >Ventilation and cave air PCO2 in the Bunker-Emst Cave System (NW Germany): implica-tions for speleothem proxy data
【24h】

Ventilation and cave air PCO2 in the Bunker-Emst Cave System (NW Germany): implica-tions for speleothem proxy data

机译:邦克—埃姆斯特洞穴系统中的通风和洞穴空气PCO2(德国):对鞘翅代虫数据的影响

获取原文
           

摘要

Cave air pCO2 (carbon dioxide partial pressure) is, along with drip rate, one of the most important factors controllingspeleothem carbonate precipitation. As a consequence, pCO2 has an indirect but important control on speleothem proxydata (e.g., elemental concentrations, isotopic values). The CO2 concentration of cave air depends on CO2 source(s) andproductivity, CO2 transport through the epikarst and karst zone, and cave air ventilation. To assess ventilation patternsin the Bunker-Emst Cave (BEC) System, we monitored the pCO2 value approximately 100 m from the lower entrance(Bunker Cave) at bi-hourly resolution between April 2012 and February 2014. The two entrances of the BEC systemwere artificially opened between 1860?1863 (Emst Cave) and 1926 (Bunker Cave). Near-atmospheric minimum pCO2dynamics of 408 ppmv are measured in winter, and up to 811 ppmv are recorded in summer. Outside air contributes thehighest proportion to cave air CO2, while soil, and possibly also ground air, provide a far smaller proportion throughoutthe whole year. Cave air pCO2 correlates positively with the temperature difference between surface and cave airduring summer and negatively in winter, with no clear pattern for spring and autumn. Dynamic ventilation is driven bytemperature and resulting density differences between cave and surface air. In summer, warm atmospheric air is entrainedthrough the upper cave entrance where it cools. With increasing density, the cooled air flows toward the lowerentrance. In winter, this pattern is reversed, due to cold, atmospheric air entering the cave via the lower entrance, whilerelatively warm cave air rises and exits the cave via the upper entrance. The situation is further modulated by preferentialsouth-southwestern winds that point directly on both cave entrances. Thus, cave ventilation is frequently disturbed,especially during periods with higher wind speed. Modern ventilation of the BEC system—induced by artificiallyopenings—is not a direct analogue for pre-1860 ventilation conditions. The artificial change of ventilation resulted in astrong increase of δ13Cspeleothem values. Prior to the cave opening in 1860, Holocene δ13Cspeleothem values were significantlylower, probably related to limited ventilation due to the lack of significant connections between the surface and cave.Reduced ventilation led to significantly higher pCO2 values, minimal CO2 degassing from drip water and low kineticisotope fractionation. Both modern and fossil speleothem precipitation rates are driven by water supply and carbonatesaturation, and not by cave air pCO2. Today, pCO2 variability is too small to affect carbonate precipitation rates and thesame is likely true for pCO2 variability prior to artificial opening of the cave. Thus, fossil speleothems from BEC Systemare likely more sensitive to temperature and infiltration dynamics. The Bunker-Emst Cave System, therefore, representsdifferent ventilation patterns and their influence on speleothem proxy data in an exemplary manner, and it may serveas a template for other cave systems.
机译:洞穴空气中的pCO2(二氧化碳分压)与滴速一起,是控制碳假丝碳酸盐沉淀的最重要因素之一。结果,pCO 2对脾吸虫代用数据(例如元素浓度,同位素值)具有间接但重要的控制。洞穴空气的CO2浓度取决于CO2来源和生产率,通过表层岩溶和喀斯特地带的CO2输送以及洞穴空气的通风。为了评估Bunker-Emst洞穴(BEC)系统中的通风方式,我们在2012年4月至2014年2月之间每隔两个小时对下入口(Bunker洞穴)约100 m处的pCO2值进行了监控。BEC系统的两个入口是人为地在1860至1863年(Emst Cave)至1926年(Bunker Cave)之间开放。冬季测得的接近大气压的最小pCO2动力学值为408 ppmv,而夏季则高达811 ppmv。全年,外部空气占洞穴空气CO2的比例最高,而土壤以及可能还有地面空气的比例则小得多。洞穴空气pCO2与夏季期间地表和洞穴空气之间的温差呈正相关,而在冬季则呈负相关,而春季和秋季则没有明确的模式。动态通风是由温度以及洞穴和地面空气之间的密度差驱动的。夏季,温暖的大气通过上方的洞穴入口entrance带,在此处进行冷却。随着密度的增加,冷却的空气流向较低的入口。在冬季,这种模式是相反的,这是由于寒冷的大气空气通过下部入口进入洞穴,而相对温暖的洞穴空气则通过上部入口上升并离开洞穴。直接在两个洞穴入口指向的南偏西南风进一步调节了这种情况。因此,洞穴通风经常受到干扰,尤其是在风速较高的时期。 BEC系统的现代通风(由人工开孔引起)不是1860年前通风条件的直接模拟。人工换气导致δ13Cspeleothem值大大增加。在1860年洞穴开放之前,全新世的δ13C鞘脂值显着降低,这可能是由于地表与洞穴之间缺乏明显的联系而导致通风受限的原因;通风减少导致pCO2值显着升高,滴水中的CO2脱气量最小以及动力学同位素低分馏。现代和化石脾脏的降水速率均由供水和碳酸盐饱和度驱动,而不是由洞穴空气pCO2驱动。如今,pCO2的变化性太小而无法影响碳酸盐的沉淀速率,在人工打开洞穴之前,pCO2的变化性也可能如此。因此,来自BEC System的化石鞘脂可能对温度和渗透动力学更敏感。因此,Bunker-Emst洞穴系统以一种示例性的方式表示了不同的通风方式及其对斑竹代用数据的影响,并且可以作为其他洞穴系统的模板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号