...
首页> 外文期刊>Journal of cardiovascular magnetic resonance : >Cardiovascular magnetic resonance physics for clinicians: part I
【24h】

Cardiovascular magnetic resonance physics for clinicians: part I

机译:临床医生的心血管磁共振物理学:第一部分

获取原文
           

摘要

There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.
机译:有许多优秀的专业文章和文章介绍了心血管磁共振(CMR)技术的物理原理。也有许多关于临床医生的文章,对磁共振(MR)技术和应用的基本物理原理提供了可理解的,更一般的介绍。但是,很少有文章或文章试图提供针对在日常实践中使用CMR的临床医生量身定制的基本MR物理介绍。这是旨在以一种易于理解且与该小组相关的方式涵盖CMR物理基本方面的两次评论中的第一篇。首先从解释MR的基本物理原理开始,包括对MR成像系统的主要组件及其产生的三种类型的磁场的描述。解释了生物系统中MR信号的起源和产生方法,特别着重于引起组织信号差异的两种组织磁化弛豫特性(T1和T2),显示了如何利用它们来产生图像对比度用于组织表征。描述了最常用于对MR信号回波进行定位和编码以形成横截面图像的方法,介绍了k空间的概念并显示了存储在其中的MR信号数据与重建图像内的属性之间的关系。在详细描述CMR采集方法之前,先介绍基本的自旋回波和梯度脉冲序列,确定影响图像对比度的关键参数,包括存在流动血液的外观,分辨率和图像采集时间。然后将更详细地描述用于心脏成像的这两个脉冲序列的主要导数。 CMR的两个关键要求是:首先需要与受试者的ECG同步数据并使其足够快以使受试者能够屏住呼吸。因此,将详细介绍使用触发和追溯门控方法进行ECG同步的方法,以及使用Turbo或快速自旋回波和梯度回波脉冲序列进行加速数据采集的方法。它显示了如何使用双反转黑血制备结合涡轮或快速自旋回波脉冲序列采集来实现高质量的解剖学成像。对于使用电影梯度回波脉冲序列的功能性心脏成像,梯度回波脉冲序列的两个导数:比较了损坏的梯度回波和平衡的稳态自由进动(bSSFP)。在每种情况下,都定义并说明了关键的相关成像参数和特定于供应商的术语。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号