首页> 外文期刊>Journal of Applied Mechanical Engineering >Inspection of Hydrodynamic Lubrication in Infinitely Long JournalBearing with Oscillating Journal Velocity
【24h】

Inspection of Hydrodynamic Lubrication in Infinitely Long JournalBearing with Oscillating Journal Velocity

机译:摆动轴颈速度对无限长轴颈轴承的流体动力润滑的检查

获取原文
           

摘要

Unsteady transient analysis is carried out for hydro-dynamically lubricated journal bearing with infinitely long approximation. The performance characteristics are investigated by oscillating the journal velocity as a ‘sine’ function of the angle for which the journal rotates with an angular speed. Results comprising of Minimum lubricant film thickness, Dynamic pressure and load, Wall shear stress, Eccentricity, Temperature distribution and heat flux with respect to time are presented in the analysis graphically with the aid of ORIGION PRO 8. The journal bearing is analyzed in ANSYS 14.0 ‘Transient Thermal’ package. The journal is modeled as a “moving wall” with an absolute rotational speed of 3000 rpm. Appropriate equations and numerical solutions (Simpson’s 1/3rd integration rule and Newton-Raphson method) are developed using ‘C programming’ for solving the Reynolds compressible differential equation. The numerical procedure is fully automated and the scheme converges rapidly. Design parameters are included in the computation taking into account turbulence and gravity. After carrying out all the above discussed scrutiny, it was observed that minimum oil film thickness is a function of oscillating velocity, pressure is inversely proportional to the minimum oil film thickness, and eccentricity and wall shear stress are also a function of the oscillating journal velocity. While the value of coefficient of friction and coefficient of friction variable are found to be maximum at the maximum velocity, thus leading to its dependency on the oscillating journal velocity. Also, variation of temperature distribution and heat flux with respect to time leads to converging of the results. Validating McKee’s investigation leads to completion of the venture.
机译:对具有无限长近似值的流体动力润滑轴颈轴承进行了非稳态瞬态分析。通过将轴颈速度作为轴颈以角速度旋转的角度的“正弦”函数进行振荡来研究性能特征。借助于ORIGION PRO 8,以图形方式显示了最小润滑剂膜厚度,动压力和负荷,壁切应力,偏心率,温度分布和热通量随时间变化的结果。在ANSYS 14.0中分析了轴颈轴承“瞬态热”封装。轴颈被建模为绝对转速为3000 rpm的“活动壁”。使用“ C编程”开发了适当的方程式和数值解(Simpson的1 / 3rd积分规则和Newton-Raphson方法)来求解雷诺可压缩微分方程。数值过程是完全自动化的,并且该方案迅速收敛。设计参数包括在计算中,考虑了湍流和重力。在进行了所有上述讨论之后,我们观察到最小油膜厚度是振荡速度的函数,压力与最小油膜厚度成反比,偏心率和壁切应力也是振荡轴颈速度的函数。虽然发现摩擦系数和摩擦系数变量的值在最大速度下最大,从而导致其对振荡轴颈速度的依赖性。而且,温度分布和热通量相对于时间的变化导致结果收敛。验证McKee的调查结果可完成合资企业。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号