首页> 外文期刊>Journal of Applied Mechanical Engineering >Analysis of Piezoelectric Solids through Boundary Element Method
【24h】

Analysis of Piezoelectric Solids through Boundary Element Method

机译:压电固体的边界元分析

获取原文
           

摘要

Boundary element method (BEM) is a powerful computational tool for analysing piezoelectric problems. The BEM has been so well developed during the past 40 years that it has been considered as a very popular computational tool. This method consists of formulating the engineering problem in terms of an integral equations relating only boundary values and determining its solutions numerically. Thus, it requires only a surface discretization, rather than a full-domain discretization with “domain-type techniques, such as the finite element method. If interior domain values are needed, however, it can be subsequently calculated from boundary data. Remarkable advances in this area during last decades can be found, for example, in Manolis and Beskos[1] and Qin [2,3]. For piezoelectric problems, BEM, as an important complementary tool for analytical method [4-8], has been the subject of fruitful scientific attention by many a distinguished researcher e.g. Lee and Jiang [9], Denda and Mansukh [10], Sanz, Ariza and Dominguez [11], Lee and Jiang [9] derived the boundary integral equation of piezoelectric media by the method of weighted residuals for lane piezoelectricity. Lu and Mahrenholtz [12] presented a variational oundary integral equation for the same problem. Ding, Wang and Chen [13] developed a boundary integral formulation which is efficient for analysing crack problems in piezoelectric material. Xu and Rajapakse 14,15] presented the formulations for problems of piezoelectric solids with various defects (cavities, inclusions, cracks, etc.). Pan [16] derived a single domain BE formulation for 2D static crack problems. Denda and Lua [17] developed a BEM formulation using Stroh’s formalism to derive the fundamental solution without numerical results. Qin 18] presented a BEM formulation for cracked piezoelectric materials with half-plane boundary. Later, Qin and Lu [19] extended the model resented in [18] to the case of piezoelectric materials containing both crack and inclusion problems. Davi and Molazo [20] used the known sub domain method to formulate a multi-domain BEM, well suited for crack problems, by modelling crack faces as boundaries of the different sub domains. Groh and Kuma [21] developed a direct collocation oundary element code with a sub domain technique for analysing crack problems and calculating stress intensity factors. Qin an Mai 22] investigate crack-hole interaction of piezoelectric materials using BEM. Zhao et al. [23], presented a boundary integral-differential model for interfacial cracks in 3D piezoelectric solids. Qin [24,25] imbedded BEM into micromechanics model for evaluating effective properties of iezoelectric solids.
机译:边界元法(BEM)是用于分析压电问题的强大计算工具。在过去的40年中,BEM的发展非常出色,以至于它被认为是非常流行的计算工具。该方法包括根据仅涉及边界值的积分方程式来表示工程问题,并在数值上确定其解。因此,它仅需要表面离散化,而不需要使用“域类型”技术(例如有限元方法)进行全域离散化。但是,如果需要内部域值,则可以随后根据边界数据进行计算。例如,在Manolis和Beskos [1]和Qin [2,3]中可以找到最近几十年来该领域的显着进展。对于压电问题,BEM作为分析方法的重要补充工具[4-8],已成为许多杰出研究人员(例如,Hyperman等)的重要科学关注课题。 Lee和Jiang [9],Denda和Mansukh [10],Sanz,Ariza和Dominguez [11],Lee和Jiang [9]通过加权残差法获得压电介质的边界积分方程。 Lu和Mahrenholtz [12]提出了针对同一问题的变分边界积分方程。丁,王和陈[13]开发了边界积分公式,该公式对于分析压电材料中的裂纹问题非常有效。 Xu and Rajapakse 14,15]提出了具有各种缺陷(空腔,夹杂物,裂缝等)的压电固体问题的公式。 Pan [16]推导了用于二维静态裂纹问题的单域BE公式。 Denda和Lua [17]利用Stroh的形式主义开发了BEM公式,以得出没有数值结果的基本解。 [秦18]提出了一种具有半平面边界的破裂压电材料的BEM配方。后来,Qin和Lu [19]将[18]中所指责的模型扩展到同时包含裂纹和夹杂问题的压电材料的情况。 Davi和Molazo [20]使用已知的子域方法,通过将裂纹面建模为不同子域的边界来制定非常适合裂纹问题的多域BEM。 Groh和Kuma [21]用子域技术开发了一种直接配置的边界元代码,用于分析裂纹问题和计算应力强度因子。秦安麦22]利用BEM研究压电材料的裂孔相互作用。赵等。 [23]提出了一种边界积分-微分模型,用于3D压电固体中的界面裂纹。 Qin [24,25]将BEM嵌入微力学模型中,以评估等电固体的有效特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号