...
首页> 外文期刊>Hereditas >Linking behavioral ecology with population genetics: insights from Drosophila nigrospiracula
【24h】

Linking behavioral ecology with population genetics: insights from Drosophila nigrospiracula

机译:将行为生态学与种群遗传学联系起来:黑腹果蝇的见解

获取原文
           

摘要

Species of the genus Drosophila exhibit a wide range of differences in the levels of population genetic differentiation observed using allozyme electrophoresis and molecular genetic studies (Powell 1997; Shoemaker and Jaenike 1997; Markow et al. 2002; Hurtado et al. 2004). An absence of relevant behavioral and ecological studies of the majority of these species makes it difficult to interpret the factors responsible for the presence or absence of population structure. Four species of cactophilic Drosophila endemic to the Sonoran Desert of North America, however, have been well characterized with respect to their ecology (Heed 1978, 1982; Breitmeyer and Markow 1998) and behavior (Markow 1982, 1988; Markow and Castrezana 2000). All four species have specialized on different columnar cactus host species, feeding and breeding in necrotic plant tissue or in soil soaked with the necrotic exudates (Heed 1978, 1982). The four Drosophila species show contrasting patterns of population subdivision, permitting hypotheses to be tested concerning the relationship between ecology and behavior and population genetic differentiation.One of the cactophilic species, D. nigrospiracula Patterson & Wheeler, exhibits no population structure across its range, compared to the other three desert endemic species, all of which exhibit some degree of local genetic differentiation. These patterns have been found whether the loci used were allozymes (Sluss 1975; Pfeiler and Markow 2001; Markow et al. 2002) or molecular genetic markers (Hurtado et al. 2004), and for D. nigrospiracula, gene frequencies have been found to be stable for over 30 years (Sluss 1975; Pfeiler and Markow 2001).Potential explanations for the observed lack of population structure and the temporal stability of gene frequencies lie in the behavioral ecology of D. nigrospiracula. Field studies demonstrate that compared to the other desert Drosophila, D. nigrospiracula is a strong disperser (Johnston and Heed 1976; Markow and Castrezana 2000). In the laboratory, flies of D. nigrospiracula have been found to become sexually mature later than those of D. melanogaster: females mate at four and males at six days of age (Markow 1982). Reproductive behavior has been found to differ in other Drosophila species, however, when field and laboratory studies have been compared (Markow 1988, 2000; Snook and Markow 2001). Therefore, while it may be tempting to speculate that long distance dispersal coupled with late reproductive maturity could explain the apparent extensive gene flow in D. nigrospiracula, caution must be exercised in the absence of information about when flies in nature mate relative to when they disperse and oviposit. For example, if D. nigrospiracula mate and oviposit prior to dispersing, adult flies emerging from a given breeding patch would exhibit some degree of inbreeding, as observed in the Opuntia-breeding D. buzzatii (Barker and Mulley 1976). On the other hand, if flies disperse before they mate, not only should local inbreeding be insignificant, but it would promote a lack of population structure. These different scenarios can be distinguished by field studies.Here we ask two questions about D. nigrospiracula: 1) when do flies mate relative to when they disperse? 2) is there evidence of inbreeding at a given micro-habitat patch? We address these questions through capture-mark-release-recapture studies using virgin flies of different ages and with allozyme electrophoresis of resident adults and newly emerged flies at the same patch.
机译:果蝇属的物种在通过等位酶电泳和分子遗传学研究观察到的种群遗传分化水平上表现出很大的差异(Powell 1997; Shoemaker and Jaenike 1997; Markow等2002; Hurtado等2004)。由于缺乏有关这些物种大多数的行为和生态学研究,因此很难解释造成种群结构存在或不存在的因素。然而,北美的索诺兰沙漠特有的四种嗜果蝇果蝇的生态学(Heed 1978,1982; Breitmeyer和Markow 1998)和行为(Markow 1982,1988; Markow and Castrezana 2000)已经得到了很好的表征。这四个物种专门针对不同的柱状仙人掌寄主物种,在坏死的植物组织或浸泡有坏死的分泌液的土壤中觅食和繁殖(Hee​​d 1978,1982)。四个果蝇物种显示出不同的种群细分模式,从而可以检验有关生态与行为与种群遗传分化之间关系的假设。相比之下,嗜温菌之一D.nigrospiracula Patterson&Wheeler在其整个范围内均没有种群结构其他三种沙漠特有物种,所有这些物种都表现出一定程度的局部遗传分化。已经发现这些模式是使用的位点是同工酶(Sluss 1975; Pfeiler和Markow 2001; Markow等人2002)还是分子遗传标记(Hurtado等人2004),并且对于黑衣螺旋体,已经发现了基因频率稳定超过30年(Sluss 1975; Pfeiler和Markow 2001)。观察到的种群结构缺乏和基因频率的时间稳定性的潜在解释在于黑毛线虫的行为生态学。野外研究表明,与其他沙漠果蝇相比,D。nigrospiracula具有很强的分散性(Johnston和Heed 1976; Markow和Castrezana 2000)。在实验室中,已发现黑螺线虫的蝇性早于黑线虫的性成熟:雌性四岁时成年,雄性六岁时成年(Markow 1982)。然而,当对果蝇的其他物种进行生殖行为研究时,它们的行为有所不同(Markow 1988,2000; Snook and Markow 2001)。因此,虽然很可能会推测长距离扩散与后期生殖成熟相结合可以解释黑线藻中明显的广泛基因流动,但在缺乏关于自然中苍蝇何时交配相对于它们何时散布的信息时,必须谨慎行事。并排卵。例如,如果黑果螺旋藻在散布前交配和排卵,从给定的繁殖斑块中出来的成年果蝇会表现出一定程度的近交,如在仙人掌繁育的巴氏uzz中观察到的那样(Barker and Mulley 1976)。另一方面,如果果蝇在交配之前散布,不仅本地近亲繁殖是微不足道的,而且会导致人口结构的缺乏。这些不同的情况可以通过实地研究加以区分。在这里,我们问两个关于黑毛螺旋藻的问题:1)苍蝇相对于何时散布? 2)在给定的微生境斑块上是否有近亲繁殖的证据?我们通过捕获标记-释放-捕获研究,使用不同年龄的原始果蝇以及常驻成年人和在相同斑块处新出现的果蝇的同工酶电泳,解决了这些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号