...
首页> 外文期刊>Hereditas >Timing of first feeding and life‐history strategies in salmon: genetic data
【24h】

Timing of first feeding and life‐history strategies in salmon: genetic data

机译:鲑鱼初次喂养的时间和生活史的策略:遗传数据

获取原文
           

摘要

The change in the size-frequency distribution from normal to bimodal over time is a well-known phenomenon in both natural (Heggenes and Metcalfe 1991; Nicieza et al. 1991) and cultivated (Metcalfe et al. 1989; Blanco et al. 1998) populations of Atlantic salmon. It is important due to the influence of bimodality in the subsequent smolting rates and in the timing of seaward migration (Bailey et al. 1980; Bailey and Friars 1994). Smolting rate is a trait of particular interest for both cultured and in wild populations and much of the interest has been focussed on studying the behaviour and growth of the morphotypes in the upper and lower modal groups in the bimodal size-frequency distribution (Thorpe et al. 1992). Although the factors that control life-history variation in Atlantic salmon are not fully understood, different studies indicate that the physiological state, the size and the growth rate of an individual will determine whether the animal adopts the early maturing or early migrant strategy the following year (Thorpe et al. 1998). Some studies have suggested a threshold size beyond smolting can occur in a given populations (reviewed by Thorpe et al. 1992). The developmental rate in the alevin phase and in the relative timing of first feeding can, on the other hand, influence the social status and the subsequent life-history strategy (Metcalfe and Thorpe 1992). Temporal variation of up to two weeks has been reported in the timing of first feeding within groups of Atlantic salmon in wild populations (Gustavson-Marjanen and Dowse 1983; Beall et al. 1994) and in cultivated groups (Metcalfe and Thorpe 1992; Brannas 1995). It has been reported that fish that has completed their alevin phase more quickly and were earlier to active first-feed, tended to be dominant over their later feeding siblings, grew faster and were more likely to smolt at an earlier age (Metcalfe and Thorpe 1992).Previous work on salmonid fish has shown a family effect on developmental rate during the alevin phase (Beacham et al. 1985; de March 1995) and on growth rate in freshwater (Thorpe and Morgan 1978). There are also evidence of isozyme pattern differences between fish adopting different life-history strategies (Carl and Healey 1984; Sánchez et al. 1994, Blanco et al. 1998, Presa et al. 1996).However, Atlantic salmon populations usually show lower levels of genetic variation at protein-coding loci and, in general, six loci (MDH-3,4*, mMEP-2*, IDHP-3*, sAAT-4*, IDDH-1* and IDDH-2*) account for more than 95 % of the total gene diversity in the species (Cross and Ward 1980; Stahl 1987; Davidson et al. 1989; Bourke et al. 1997). Allozymes have therefore a limited value as genetic markers and thus alternative methods are required in order to make more detailed analyses of genetic variation in this species. Currently, new molecular genetic markers, like RFLPs, AFLPs, RAPDs, minisatellite, microsatellite, etc., are being developed and between them, microsatellite markers exhibit attributes that make them particularly suitable for genetic characterisation; for example, they are very abundant, exhibit usually high levels of allelic variation, are codominant markers inherited in a Mendelian fashion and, in addition, only small amounts of tissue are required for analysis (Wright and Bentzen 1995; Jarne and Lagoda 1996).In this work, a characterization of genetic diversity of different groups into timing of first active feeding and life-history strategies in Atlantic salmon was carried out using 6 allozymes and 8 microsatellites markers.
机译:在自然(Heggenes和Metcalfe 1991; Nicieza等1991)和人工栽培的(Metcalfe等1989; Blanco等1998)中,大小-频率分布随时间从正态变化为双峰是一种众所周知的现象。大西洋鲑的种群。由于双峰性对随后的成虫率和向海迁徙的时间的影响,这一点很重要(Bailey等,1980; Bailey和Friars,1994)。人工繁殖率是养殖种群和野生种群特别感兴趣的一个特征,并且许多兴趣都集中在研究双峰大小-频率分布中上,下模态群中形态型的行为和生长(Thorpe等人(1992年)。尽管控制大西洋鲑生活史变化的因素尚不完全清楚,但不同的研究表明,个体的生理状态,大小和生长速度将决定该动物是否在第二年采取早期成熟或早期迁徙策略。 (Thorpe et al。1998)。一些研究表明,在给定的种群中可能会发生超过蜕皮的阈值大小(Thorpe et al。1992综述)。另一方面,在鱼精蛋白阶段和第一次进食的相对时间中的发育速度会影响社会地位和随后的生活史策略(Metcalfe and Thorpe 1992)。在野生种群(Gustavson-Marjanen和Dowse 1983; Beall等,1994)和养殖群体(Metcalfe和Thorpe,1992; Brannas,1995)中,首次在大西洋鲑鱼群内进食的时间据报道可长达两周。 )。据报道,鱼类完成其鱼粉蛋白阶段的速度更快,并且较早地进行主动第一次喂食,往往在以后的喂食兄弟姐妹中占主导地位,生长得更快,并且更有可能在较早的年龄进行蜕皮(Metcalfe and Thorpe 1992)。先前关于鲑科鱼类的研究表明,在alevin阶段(Beacham等人1985; 1995年3月)和淡水生长率(Thorpe and Morgan 1978)都有家庭效应。也有证据表明采用不同的生活史策略的鱼类之间的同工酶模式存在差异(Carl和Healey 1984;Sánchez等1994,Blanco等1998,Presa等1996),但是大西洋鲑鱼种群通常水平较低蛋白质编码基因座的遗传变异的分析,通常是六个基因座(MDH-3,4 *,mMEP-2 *,IDHP-3 *,sAAT-4 *,IDDH-1 *和IDDH-2 *)超过该物种总基因多样性的95%(Cross and Ward 1980; Stahl 1987; Davidson等1989; Bourke等1997)。因此,同工酶作为遗传标记物的价值有限,因此需要其他方法才能对该物种的遗传变异进行更详细的分析。当前,正在开发新的分子遗传标记,例如RFLP,AFLP,RAPD,小卫星,微卫星等,并且在它们之间,微卫星标记具有使它们特别适合于遗传表征的特性。例如,它们非常丰富,通常表现出较高的等位基因变异水平,是孟德尔遗传的主要标记,此外,仅需少量组织即可进行分析(Wright和Bentzen 1995; Jarne和Lagoda 1996)。在这项工作中,使用6种同工酶和8种微卫星标记物对大西洋鲑首次主动进食的时间和生活史策略的不同群体的遗传多样性进行了表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号