首页> 外文期刊>History of Geo- and Space Sciences >Extreme ultraviolet spectral irradiance measurements since 1946
【24h】

Extreme ultraviolet spectral irradiance measurements since 1946

机译:自1946年以来的极端紫外光谱辐照度测量

获取原文
           

摘要

In the physics of the upper atmosphere the solar extremeultraviolet (EUV) radiation plays a dominant role controlling most of thethermospheric/ionospheric (T/I) processes. Since this part of the solarspectrum is absorbed in the thermosphere, platforms to measure the EUVfluxes became only available with the development of rockets reachingaltitude levels exceeding 80 km. With the availability of V2 rockets used inspace research, recording of EUV spectra started in 1946 using photographicfilms. The development of pointing devices to accurately orient thespectrographs toward the sun initiated intense activities insolar–terrestrial research. The application of photoelectric recordingtechnology enabled the scientists placing EUV spectrometers aboardsatellites observing qualitatively strong variability of the solar EUVirradiance on short-, medium-, and long-term scales. However, as moremeasurements were performed more radiometric EUV data diverged due to theinherent degradation of the EUV instruments with time. Also, continuousrecording of the EUV energy input to the T/I system was not achieved. It is onlyat the end of the last century that there was progress made in solving the seriousproblem of degradation enabling to monitore solar EUV fluxes with sufficientradiometric accuracy. The data sets available allow composing the dataavailable to the first set of EUV data covering a period of 11 years forthe first time. Based on the sophisticated instrumentation verified in space,future EUV measurements of the solar spectral irradiance (SSI) are promisingaccuracy levels of about 5% and less. With added low-cost equipment,real-time measurements will allow providing data needed in ionosphericmodeling, e.g., for correcting propagation delays of navigation signals fromspace to earth. Adding EUV airglow and auroral emission monitoring byairglow cameras, the impact of space weather on the terrestrial T/I systemcan be studied with a spectral terrestrial irradiance camera (STI-Cam) andalso be used investigating real-time space weather effects and deriving moredetailed correction procedures for the evaluation of Global NavigationSatellite System (GNSS) signals. Progress in physics goes with achievinghigher accuracy in measurements. This review historically guides thereader on the ways of exploring the impact of the variable solar radiation inthe extreme ultraviolet spectral region on our upper atmosphere in thealtitude regime from 80 to 1000 km.
机译:在高层大气的物理学中,太阳极端紫外线(EUV)辐射起着控制大多数热层/电离层(T / I)过程的作用。由于这部分太阳光谱被吸收在热层中,因此只有在发展到海拔超过80公里的火箭时,才可以使用测量EUVflux的平台。随着用于太空研究的V2火箭的可用性,EUV光谱的记录开始于1946年,使用照相底片。为了使光谱仪准确地对准太阳,定点设备的发展引发了强烈的太阳地面研究活动。光电记录技术的应用使科学家能够将EUV光谱仪放置在卫星上,从而在短期,中期和长期范围内观察到太阳能EUVirradiance的定性变化很大。但是,随着EUV仪器固有的退化,随着辐射测量量的增加,更多的辐射EUV数据也出现了差异。同样,没有连续记录输入到T / I系统的EUV能量。直到上世纪末,在解决严重的降解问题方面才取得了进展,从而能够以足够的辐射测量精度监控太阳能EUV通量。可用的数据集允许将可使用的数据首次组合为涵盖11年期限的第一批EUV数据。基于在太空中经过验证的精密仪器,太阳光谱辐照度(SSI)的未来EUV测量结果有望达到约5%甚至更低的精度水平。利用增加的低成本设备,实时测量将允许提供电离层建模所需的数据,例如,用于校正导航信号从太空到地球的传播延迟。通过使用气辉摄像机增加EUV气辉和极光发射监测,可以使用光谱地面辐射相机(STI-Cam)研究太空天气对地面T / I系统的影响,还可以用于调查实时太空天气影响并推导更多详细的校正程序用于评估全球导航卫星系统(GNSS)信号。物理上的进步伴随着更高的测量精度。这篇评论从历史上指导读者探索在80至1000 km海拔高度范围内极端紫外光谱区域中可变太阳辐射对我们高层大气的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号