首页> 外文期刊>History of Geo- and Space Sciences >Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective
【24h】

Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective

机译:历史回顾中的极光亮度分布和离散极光形式的动力学研究

获取原文
           

摘要

Research results about planetary-scaleauroral distributions are presented in a historical retrospective, beginningwith the first "maps of isochasms" – lines of equal visibility of aurorasin the firmament (Fig. 2) – up to "isoaurora maps" – lines ofequal occurrence frequency of auroras in the zenith (Fig. 4). Theexploration of auroras in Russia from Lomonosov in the 18th century(Fig. 1) until the start of the International Geophysical Year (IGY)in 1957 is shortly summed up. A generalised pattern of discrete auroral formsalong the auroral oval during geomagnetically very quiet intervals ispresented in Fig. 5. The changes of discrete auroral forms versuslocal time exhibit a fixed pattern with respect to the sun. The auroral formscomprise rays near noon, homogeneous arcs during the evening, and rayed arcsand bands during the night and in the morning. This fixed auroral pattern isunsettled during disturbances, which occur sometimes even during very quietintervals. The azimuths of extended auroral forms vary with local time. Suchvariations in the orientation of extended forms above stations in the auroralzone have been used by various investigators to determine the position of theauroral oval (Fig. 9). Auroral luminosity of the daytime andnighttime sectors differ owing to different luminosity forms, directions ofmotion of the discrete forms, the height of the luminescent layers, and thespectral composition (predominant red emissions during daytime and greenemissions during the night). Schemes that summarise principal peculiaritiesof daytime luminosity, its structure in MLT (magnetic localtime) and MLat (magnetic latitude) coordinates, and thespectral composition of the luminosity are presented in Figs. 15 and19. We discuss in detail the daytime sector dynamics of individualdiscrete forms for both quiet conditions and auroral substorms. The mostimportant auroral changes during substorms occur in the nighttime sector. Wepresent the evolution of conceptions about the succession of discrete auroralforms and their dynamics during disturbance intervals. This ranges fromBirkeland's polar elementary storms, over the prospect of a fixed auroralpattern up to the auroral substorm model. The classic schemes of the spatialdistribution and motion of discrete auroral forms during single substorms areshown in Fig. 20 (expansive and recovery phases) andFig. 21 (creation, expansive and recovery phases). In this review wediscuss various models of bulge formation, in particular as a result of new formation of arcs about 50–100 km poleward of previously existing auroralstructures (Fig. 24). Discrete steps in the development of anexpanding bulge are separated by 1–3 min from each other. The model ofsuccessive activations confines only to a ~40° longitudinalportion of the magnetotail (Fig. 28). We consider differences in thedevelopment of single substorms and substorms during magnetic storms. Thestructure and dynamics of auroras during steady magnetospheric convection(SMC) periods are dealt with in Sect. 8. A generalised schemeof the auroral distribution during SMC periods is shown in Fig. 34.Separate sections describe discrete auroras in the polar cap(Sect. 5), and the diffuse luminosity equatorward of the auroraloval (Sect. 9). Visual observations of diffuse auroral formsat midlatitudes suggest that the whole latitudinal interval between theauroral oval and the stable auroral red (SAR) arc is filled up with diffuseluminosity. SAR arcs with intensities of several tens of Rayleigh enclosesystematically the region of diffuse luminosity; they are positioned at theborder of the plasmasphere.
机译:关于行星尺度极光分布的研究结果以历史回顾的形式提出,首先是第一个“等轴线图”-穹隆中极光的可见度相等的线(图2)-直到“等极光图”-极光的出现频率相等的线在天顶(图4)。总结了18世纪从罗蒙诺索夫(图1)到1957年国际地球物理年(IGY)开始的俄罗斯极光的探索。图5给出了在地磁非常安静的时间间隔内,沿极光椭圆形成的离散极光形式的一般模式。离散极光形式相对于当地时间的变化相对于太阳呈现出固定的模式。极光形式包括正午时分的射线,傍晚时分的均匀弧形,以及夜晚和早晨时发出的弧形砂带。这种固定的极光模式在干扰期间并没有解决,有时甚至在非常安静的时间间隔内也会发生。极光形式的方位角随当地时间变化。各种研究者已使用这种在极光带站上方延伸形式的方位变化来确定极光椭圆形的位置(图9)。由于不同的光度形式,离散形式的运动方向,发光层的高度以及光谱组成(白天的主要红色发射和夜间的绿色发射),白天和夜间的极光亮度有所不同。总结了白天发光度的主要特性,其在MLT(磁性时域)和MLat(磁性纬度)坐标中的结构以及发光度的光谱组成的方案。 15和19。我们详细讨论了在安静条件和极光亚暴时单个离散形式的白天部门动态。亚暴期间最重要的极光变化发生在夜间。我们介绍了离散的极光形式的连续性及其扰动间隔期间的动力学概念的演变。从伯克兰的极地基本风暴到固定的极光模式的前景,再到极光亚暴模式。图20(扩展和恢复阶段)和图20显示了单个亚暴期间离散极光形式的空间分布和运动的经典方案。 21(创建,扩展和恢复阶段)。在这篇综述中,我们讨论了各种隆起形成的模型,特别是由于新弧形的形成是在先前存在的极光结构向北极方向约50-100 km处形成的(图24)。膨胀隆起的离散步骤彼此分开1-3分钟。成功激活的模型仅限于磁尾的约40°纵向部分(图28)。我们考虑了单个亚暴和磁暴期间亚暴发展的差异。在节中讨论了稳定磁层对流(SMC)期间极光的结构和动力学。 8. SMC期间的极光分布的一般方案如图34所示。单独的部分描述了极地帽中的离散极光(第5节),以及极光卵形的弥散光度赤道线(第9节)。在中纬度对弥散的极光形式的视觉观察表明,在极光椭圆和稳定极光红色(SAR)弧之间的整个纬向间隔充满了弥散发光度。强度为几十瑞利的SAR弧线系统地包围了发散光度的区域。它们位于等离子层的边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号