...
首页> 外文期刊>Hereditas >Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn.
【24h】

Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn.

机译:紫花苜蓿Gaertn自然种群中rDNA基因座的基因组组织。

获取原文
           

摘要

Annual species constitute the most numerous component of the genus Medicago. They are native to the Mediterranean basin from which they spread to areas of the world with mediterranean climate. These species, commonly named medics, are extremely heterogeneous in morphology, environmental adaptation and in chromosome number. The greater part are diploid with 2n=16 and 2n=14 and two are polyploid with 2n=30 (Quiros and Bauchan 1988). Because of some interesting characteristics such as rapid growth, large production of pods, viability of the seeds on soil for long periods of time and nitrogen fixation by means of the bacterial activity, medics received an increasing attention in the last decade (Crawford et al. 1989; Russi et al. 1992). At present they are regarded as very promising species for sustainable agricultural systems as well as for environmental uses (Bauchan 1998). Numerous studies have also been carried out to understand their phylogenesis and to explore their germplasm (Mariani and Falistocco 1990; Brunner et al. 1995; Diwan et al. 1997). One of the most studied species is M. truncatula, a diploid (2n=16) self-pollinating plant with a small genome size (0.9–1.1 pg) and which responds very well to regeneration and transformation methods (Bennett and Leitch 1995; Chabaud et al. 1996). Such characteristics make M. truncatula a very suitable species for basic genetic studies, and it has been considered a model species for Leguminosae, in general, and of alfalfa (M. sativa L.) in particular (Barker et al. 1990).The analysis of the genetic diversity and the construction of a linkage map based on recombinant lines have been the principal objectives of the research programmes using this species. At present, more then 200 genetic markers have been mapped over 6 linkage groups (Bonnin et al. 1996).In contrast with the advances in the field of molecular biology, cytogenetic research has remained very limited even though it can offer an extremely valuable approach to the analysis of the genome structure of the species and to the understanding of intraspecific variations.In recent years molecular cytogenetic techniques have opened new possibilities for chromosome study, particularly in those species that, like medics, have small and similar chromosomes, thus yielding scarce information when treated with traditional methods (Maluszynska and Heslop-Harrison 1993; Schmidt et al. 1994).DNA fluorescent in situ hybridization (FISH) used in conjunction with fluorochrome staining has turned out to be a crucial tool for effective progress in the study of animal and plant chromosomes by overcoming limitations due to size and morphology. The FISH technique enables the location of genes or other DNA sequences to be visualized directly on metaphase chromosomes. The positions of the labelled sequences may provide useful information in studies of genome organization, chromosome evolution and cytotaxonomy (Jiang and Gill 1994).The sites of the ribosomal genes (18S-5.8S-25S rDNA and 5S rDNA) constitute reliable landmarks for chromosome identification, so the detection of rDNA sequences by FISH is generally the first step toward the physical mapping of chromosomes (Leitch and Heslop-Harrison 1992). Such genes represent two highly conserved families of repetitive DNA sequences in the eukaryotic genome. The 18S-5.8S-25S genes are present in hundreds of repeated units arranged in tandem arrays at the nucleolar organizer regions (NORs) and sometimes at other sites not associated with the NORs (Lapitan 1992). The 5S rRNA have a similar organization, even though their position along the chromosome is not revealed by any morphological characteristics and their detection is possible only by applying in situ hybridization. In the higher eukaryotes such genes constitute a cluster independent from the 18S-5.8S-25S genes.In the present study we analyzed the distribution of 18S-5.8S-25S and 5S ribosomal genes on chromosomes of M. truncatula by using double targ
机译:一年生种类构成了紫花苜蓿属的最大组成部分。它们原产于地中海盆地,并从那里传播到地中海气候的世界。这些物种(通常称为军医)在形态,环境适应性和染色体数目方面极为不同。大部分是2n = 16和2n = 14的二倍体,两个是2n = 30的多倍体(Quiros和Bauchan 1988)。由于一些有趣的特征,例如快速生长,豆荚的大量生产,种子在土壤上的长期生存能力以及通过细菌活性进行的固氮作用,在过去十年中,医护人员受到了越来越多的关注(Crawford等。 1989; Russi等,1992)。目前,它们被认为是可持续农业系统以及环境用途的极有前景的物种(Bauchan 1998)。为了了解它们的系统发育并探索其种质,也进行了大量的研究(Mariani和Falistocco 1990; Brunner等人1995; Diwan等人1997)。研究最深入的物种之一是截短芒(M. truncatula),这是一种二倍体(2n = 16)自花授粉植物,具有小的基因组大小(0.9–1.1 pg),并且对再生和转化方法反应非常好(Bennett and Leitch 1995; Chabaud等人,1996)。这些特性使截叶分枝杆菌成为非常适合基础遗传学研究的物种,并且通常被认为是豆科植物的典范物种,尤其是苜蓿(M. sativa L.)的典范物种(Barker et al.1990)。遗传多样性的分析和基于重组品系的连锁图的构建一直是使用该物种的研究计划的主要目标。目前,已经在6个连锁组上绘制了200多个遗传标记(Bonnin等,1996)。与分子生物学领域的进展相反,尽管细胞遗传学研究可以提供非常有价值的方法,但仍然非常有限近年来,分子细胞遗传学技术为染色体研究开辟了新的可能性,特别是对于那些像军医一样具有小而相似的染色体,从而导致稀缺的物种传统方法处理时获得的信息(Maluszynska和Heslop-Harrison 1993; Schmidt et al。1994)。DNA荧光原位杂交(FISH)与荧光染料染色结合使用已被证明是有效研究HMI的重要工具。通过克服由于大小和形态而造成的局限性,使动物和植物的染色体变得容易。 FISH技术可以使基因或其他DNA序列的位置直接显示在中期染色体上。标记序列的位置可能为研究基因组组织,染色体进化和细胞分类学提供有用的信息(Jiang和Gill 1994)。核糖体基因的位点(18S-5.8S-25S rDNA和5S rDNA)构成了染色体的可靠标志。因此,通过FISH检测rDNA序列通常是对染色体进行物理定位的第一步(Leitch和Heslop-Harrison 1992)。这样的基因代表了真核基因组中两个高度保守的重复DNA序列家族。 18S-5.8S-25S基因以成百上千个重复单元的形式串联排列,排列在核仁组织区(NORs)上,有时在与NORs不相关的其他位点上(Lapitan 1992)。 5S rRNA具有相似的组织,即使它们在染色体上的位置没有任何形态特征揭示,并且仅通过原位杂交即可检测到。在高等真核生物中,这些基因构成了一个独立于18S-5.8S-25S基因的簇。在本研究中,我们通过使用双targ分析了18S-5.8S-25S和5S核糖体基因在t藜的染色体上的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号