...
首页> 外文期刊>The Journal of Nuclear Medicine >Imaging Endogenous Gene Expression in Brain Cancer In Vivo with 111In-Peptide Nucleic Acid Antisense Radiopharmaceuticals and Brain Drug-Targeting Technology
【24h】

Imaging Endogenous Gene Expression in Brain Cancer In Vivo with 111In-Peptide Nucleic Acid Antisense Radiopharmaceuticals and Brain Drug-Targeting Technology

机译:使用111 In-肽核酸反义放射性药物和脑靶向药物技术对体内脑癌中的内源基因表达进行成像

获取原文
           

摘要

Imaging endogenous gene expression with sequence-specific antisense radiopharmaceuticals is possible if the antisense agent is enabled to traverse the biologic membrane barriers that separate the blood compartment from messenger RNA (mRNA) molecules in the cytoplasm of the target cell. The present studies were designed to image endogenous gene expression in brain cancer using peptide nucleic acid (PNA) antisense agents that were modified to allow for (a) chelation of the 111In radionuclide and (b) attachment to a brain targeting system, which delivers the PNA across both the blooda€“brain barrier (BBB) and the tumor cell membrane. Methods: PNAs were designed that were antisense to either the rat glial fibrillary acidic protein (GFAP) mRNA or the rat caveolin-1?± (CAV) mRNA. The PNA contained an amino-terminal diethylenetriaminepentaacetic acid moiety to chelate 111In and a carboxyl-terminal ?μ-biotinyl lysine residue, which enabled attachment to the delivery system. The latter comprised streptavidin (SA) and the murine OX26 monoclonal antibody to the rat transferrin receptor (TfR), which were joined by a thiol-ether linker. Control PNAs were not conjugated to SA-OX26. Brain tumors developed after the intracerebral injection of rat RG2 glial cells in adult Fischer CD344 rats. GFAP and CAV gene expression in the tumor in vivo was monitored by confocal microscopy and Northern blotting with GFAP and CAV complementary DNAs. Results: If the PNA was not targeted to the TfR, then no imaging of any brain structures was possible, owing to the absence of PNA transport across the BBB. Conjugation of the 111In-GFAP-PNA to the SA-OX26 delivery system did not image brain cancer, owing to the downregulation of the GFAP mRNA in brain glial tumors. In contrast, brain cancer was selectively imaged with the 111In-CAV-PNA conjugated to SA-OX26 owing to upregulation of CAV gene expression in brain cancer. Conclusion: Imaging endogenous gene expression in vivo with PNA antisense radiopharmaceuticals is possible if drug-targeting technology is used. Attachment of the PNA antisense agent to the targeting ligand enables the antisense radiopharmaceutical to traverse biologic membrane barriers and access intracellular target mRNA molecules.
机译:如果使反义剂能够穿越将靶标细胞质中信使RNA(mRNA)分子与血液分隔开的生物膜屏障,则可以使用序列特异性反义放射性药物对内源基因表达进行成像。本研究旨在使用肽核酸(PNA)反义剂对脑癌中的内源性基因表达进行成像,并对其进行修饰,以允许(a)螯合111In放射性核素和(b)附着于脑靶向系统,该系统可将穿过血脑屏障(BBB)和肿瘤细胞膜的PNA。方法:设计与大鼠神经胶质纤维酸性蛋白(GFAP)mRNA或大鼠小窝蛋白1α±(CAV)mRNA反义的PNA。 PNA包含与111In螯合的氨基末端二亚乙基三胺五乙酸部分和羧基末端的μμ-生物素赖氨酸残基,其能够与递送系统连接。后者包含链霉亲和素(SA)和抗大鼠转铁蛋白受体(TfR)的鼠OX26单克隆抗体,它们通过硫醇醚连接子连接。对照PNA不与SA-OX26缀合。脑内注射成年Fischer CD344大鼠的大鼠RG2胶质细胞后出现脑肿瘤。通过共聚焦显微镜和GFAP和CAV互补DNA的Northern印迹监测体内肿瘤中的GFAP和CAV基因表达。结果:如果PNA并非针对TfR,则由于没有PNA跨BBB转运,因此无法对任何大脑结构进行成像。由于脑胶质瘤中GFAP mRNA的下调,将111In-GFAP-PNA与SA-OX26递送系统结合不会使脑癌成像。相反,由于脑癌中CAV基因表达的上调,用与SA-OX26偶联的111In-CAV-PNA对脑癌进行了选择性成像。结论:如果使用药物靶向技术,则可以使用PNA反义放射性药物对体内内源基因表达进行成像。 PNA反义剂与靶向配体的连接使反义放射性药物能够穿越生物膜屏障并进入细胞内靶标mRNA分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号