首页> 外文期刊>The Internet Journal of Pathology >Mechanical Events In Physiopathology Of Idiopathic PulmonaryEmphysema: A Theoretical Analysis
【24h】

Mechanical Events In Physiopathology Of Idiopathic PulmonaryEmphysema: A Theoretical Analysis

机译:特发性肺积水生理病理中的机械事件:理论分析

获取原文
           

摘要

Lung volume reduction (LVR) surgery, now quitefrequently used as a therapeutic option in lung emphysema, is aimed atadvantageously interfering with the structural alterations ofbronchoalveolar architecture and the thoracic cage and diaphragm changescharacterizing the emphysema. All the changes of the emphysematousparenchyma are triggered by interalveolar septa rupture. The purpose of thisarticle is to analyze this main pathogenic event and its purely mechanicalconsequences, which are the only ones that can be expected to be modified byLVR, independently of the nature and extent of the etiopathogenic processthat brought the septa to the condition in which their rupture was possible. Introduction The etiopathogenesis of lung emphysema is quite complex and its details not yet completely clarified; in fact apart from forms in which it is possible to prove an alteration in the elastic properties of the lung caused by a genetically defined a-1 antitrypsin deficiency (1), in the majority of cases the origin is certainly related to prolonged action on the lung parenchyma of a variety of physical and chemical agents (cigarette smoke, toxic substances, etc.) which can produce the anatomopathological picture of emphysema (2,3).It has recently been proved, however, that simple lung volume reduction (LVR) has beneficial effects in selected patients, by causing a rearrangement of the residual lung and thoracic cage-diaphragm disposition. The purpose of this article is, therefore, to analyze the physiopathology of emphysema, confining this analysis to the mechanical events in the fine pulmonary architecture and thoracic cage-diaphragm disposition, that are the only factors that can be expected to be modifiable by LVR. Surgical Physiopathology Despite the fact that the nature, extent and severity of the alveolar membrane alterations probably differ according to the underlying pathogenic agent, a common element characterizes the final picture of emphysema due to any pathogenic agent, i.e. rupture of the interalveolar septa. This elementary injury triggers a series of consequences, essentially mechanico-structural, in the delicate and interconnected bronco-alveolar architecture whose final rearrangement conditions, at least in part, the clinical symptoms. The direct effects of this main event can be summarized in the following points. Intrapulmonary air collection- surrounding parenchymal collapse The alveolar sacs that form the acina, i.e. the lung functional unit, have an organized architectural structure that, chiefly because of the uniform and particular characteristics of elasticity of the alveolar walls, but also because of the complex interalveolar communication system (pores of Kohn) and surfactant, guarantees harmonious, uniform expansion and ventilation of the alveoli during the respiratory cycle. The simple rupture of a relatively small number of interalveolar septa through the immediately consequent redistribution of the elastic forces, causes an important alteration in lung architecture characterized essentially by the creation of intraparenchymal air spaces and by the collapse of adjacent healthy parenchyma. A useful and clarifying simulation of the mechanism of the lung structure disarrangement resulting from septa rupture is offered, in a two-dimensional model, by interrupting a series of threads in an elastic net, distended at moderate tension over a finite surface (Fig. 1). In this model, statically similar to lung structure, the interruption of an individual thread, simulating the rupture of an alveolar septum, generates a new structural arrangement in which at least four components can be recognized: the rupture of an alveolar septum puts two contiguous alveoli in wide communication, creating a bigger individual air space, with an air/alveolar wall ratio less favorable for gas exchange (Fig. 1); the contemporaneous redistribution of the net elastic forces in consequence of the lack of the balancing action of the interrupted
机译:肺减容术(LVR)现已广泛用作肺气肿的治疗选择,其目的是有利于干扰支气管肺泡结构的结构改变以及表征肺气肿的胸廓和diaphragm肌变化。肺气肿实质的所有变化都是由肺泡间隔破裂引起的。本文的目的是分析这种主要的致病事件及其纯机械后果,这是预期可以通过LVR进行修改的唯一事件,而与导致隔膜进入破裂状态的病原过程的性质和程度无关是可能的。引言肺气肿的病因发病机制十分复杂,其细节尚未完全阐明。实际上,除了可能证明由遗传定义的a-1抗胰蛋白酶缺乏症(1)引起的肺弹性特性改变的形式外,在大多数情况下,其起源当然与对皮肤的长期作用有关。肺实质中的各种物理和化学物质(香烟烟雾,有毒物质等)可产生肺气肿的解剖病理学图像(2,3),但是最近已被证明简单的肺体积减小(LVR)通过引起残余肺和胸廓-膜片结构的重排,对某些患者具有有益的作用。因此,本文的目的是分析肺气肿的生理病理,将这种分析限制在精细的肺部结构和胸廓-膜片位置的机械事件中,这是LVR可以预期改变的唯一因素。手术生理病理学尽管根据潜在的病原体,肺泡膜改变的性质,程度和严重性可能有所不同,但由于任何病原体,即肺泡间隔破裂,最终的肺气肿图片都是一个共同的因素。这种基本的伤害在脆弱而又相互联系的野马-肺泡结构中引发一系列后果,从本质上说是机械结构,其最终重排条件至少部分是临床症状。此主要事件的直接影响可以归纳为以下几点。肺内空气收集-周围实质塌陷形成腺泡的肺泡囊(即肺功能单元)具有组织化的建筑结构,这主要是由于肺泡壁弹性的均匀性和特殊性,也是由于复杂的肺泡间通讯系统(Kohn的孔)和表面活性剂可确保呼吸周期中肺泡的和谐,均匀膨胀和通气。通过立即重新分配弹性力而使相对少量的肺泡间隔发生简单破裂,会导致肺部结构发生重要变化,其主要特征是实质内气隙的产生和相邻健康实质的塌陷。在二维模型中,通过中断弹性网中的一系列线,在有限的表面上以中等张力张开,可以有效而清晰地模拟由隔片破裂引起的肺结构紊乱的机制(图1)。 )。在此模型中,静态类似于肺部结构,模拟肺泡隔膜破裂的单个线程的中断产生了一种新的结构排列,其中至少可以识别四个成分:肺泡隔膜破裂会放置两个连续的肺泡在广泛的沟通中,创造了更大的独立空气空间,空气/肺泡壁比不利于气体交换(图1);由于缺乏间断的平衡作用而导致净弹性力的同时重新分配

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号