首页> 外文期刊>The Internet Journal of Microbiology >Molecular Characterization Of Pseudomonas Aeruginosa Clinical Isolates Among Patients Of The Hospital Del Ni?o, Republic Of Panama
【24h】

Molecular Characterization Of Pseudomonas Aeruginosa Clinical Isolates Among Patients Of The Hospital Del Ni?o, Republic Of Panama

机译:巴拿马共和国德尔尼奥医院的患者中铜绿假单胞菌临床分离株的分子特征

获取原文
           

摘要

The molecular characterization of 37 clinical isolates of P. aeruginosa obtained during September 2013 and September 2014 was conducted based on the 16S rDNA and oprL genes. The genetic diversity among isolates was determined with ERIC-pcr. The segments of the opr L and 16s rDNA genes were used to detect all P. aeruginosa isolates. The ERIC-PCR bands generated patterns that allowed the separation of isolates into different groups or clades and classify them into different genotypes.The susceptibility pattern of the isolated strains against ceftazidime, imipenem, gentamicin and amikin was assessed by a disk diffusion method. The percentage of isolates resistant to ceftazidime, imipenem, gentamicin and amikin was 14%, 16%, 16% and 24% respectively. In general these percentages are relatively low compared to those reported in other countries and only one of the isolates (64113) showed multidrug resistance. Introduction Pseudomonas aeruginosa is a ubiquitous gram-negative rod shaped bacterium with a polar flagellum. Among fluorescent pseudomonads belonging to the rRNA group I of the gamma subclass of Proteobacteria, it is the only recognized human pathogen (De Vos et al., 2001, Palleroni, 2008).Pseudomonas aeruginosa is a nosocomial human pathogen in immuno-compromised patients, such as those with cystic fibrosis, cancer, burns, and those hospitalized in intensive care units. Infections caused by Pseudomonas species include endocarditis, pneumonia, and infections of the urinary tract, central nervous system, wounds, eyes, ears, skin, and musculoskeletal system. (Pirnay et al., 2000, 2002, Campana et al., 2004). The use of catheters, medical devices, and chemical disinfectants represent an optimal means for acquiring nosocomial infections and therefore efforts to control the spread of the infections are difficult. In addition the emergence of multidrug resistant isolates of P. aeruginosa may lead to severe infections and life-long treatments. These infections are untreatable because of the higher resistance to antimicrobial agents and lack of new drug development (Aendekerk et al., 2005, Stheling et al., 2010, Luna de Araujo, de et al., 2012, Nikbin et al., 2012, Kan et al., 2014).The virulence factors of P. aeruginosa such as exotin A, exoenzyme S, pyoverdine, elastase and sialicidase among others are strongly regulated by cell to cell signaling systems that contribute to its pathogenecity (Cornelis et al., 1989, Van Delden & Iglewski, 1998, Khalifa et al., 2011). The outer membrane proteins of P. aeruginosa play an important role in the bacteria-environment interactions and therefore to the pathogenic infections. The inherent resistance of P. aeruginosa to antibiotics is a consequence of the presence of specific proteins in the outer membrane, efflux pumps that affect cellular permeability. The outer membrane lipoproteins OprL and OprI have been implicated in these efflux transport systems (De Vos et al., 1997, Matthijs, Khattab, et al., 2015).P. aeruginosa identification has been based on phenotypic observations like the growth on selective media such as cetrimide agar, bacto casamino acids, and serotyping and anti-microbial-testing. However other gram-negative bacilli including other Pseudomonas species may interfere with the phenotypic typing of P. aeruginosa and this represents a drawback for the treatment of patients, particularly with regard to antimicrobial therapy and control of infection in hospitals. The genotyping methods solve the variable phenotype problem and are specific for the identification of P. aeruginosa. Since OprL and OprI proteins are found only in this organism they could be a reliable factor for rapid identification of P. aeruginosa in clinical samples. The 16S rDNA gene and the enterobacterial repetitive intergenic consensus sequences (ERIC) have been successfully used in epidemiological studies of several microorganisms, including P. aeruginosa (Stehling et al., 2010).In this study 37 P. aeruginosa cli
机译:基于16S rDNA和oprL基因,对2013年9月至2014年9月获得的37株铜绿假单胞菌临床分离株进行了分子鉴定。分离株之间的遗传多样性用ERIC-pcr确定。 opr L和16s rDNA基因的片段用于检测所有铜绿假单胞菌分离株。 ERIC-PCR谱带产生的图谱可将分离株分为不同的组或进化枝,并将其分类为不同的基因型。通过圆盘扩散法评估分离菌株对头孢他啶,亚胺培南,庆大霉素和阿米金的敏感性。耐头孢他啶,亚胺培南,庆大霉素和阿米金的分离株百分比分别为14%,16%,16%和24%。一般而言,与其他国家/地区相比,这些百分比相对较低,并且只有一种分离株(64113)显示出多药耐药性。简介铜绿假单胞菌是一种普遍存在的革兰氏阴性杆状细菌,带有极鞭毛。在属于变形杆菌γ亚型rRNA I类的荧光假单胞菌中,它是唯一公认的人类病原体(De Vos等人,2001; Palleroni,2008)。铜绿假单胞菌是免疫受损患者的医院人类病原体,例如患有囊性纤维化,癌症,烧伤的患者以及在重症监护室住院的患者。由假单胞菌属物种引起的感染包括心内膜炎,肺炎和泌尿道,中枢神经系统,伤口,眼睛,耳朵,皮肤和肌肉骨骼系统的感染。 (Pirnay等,2000,2002,Campana等,2004)。导管,医疗设备和化学消毒剂的使用是获得医院感染的最佳手段,因此很难控制感染的传播。此外,铜绿假单胞菌的多药耐药菌株的出现可能导致严重的感染和终身治疗。这些感染无法治愈,因为对抗菌剂的耐药性更高且缺乏新药开发(Aendekerk等人,2005; Stheling等人,2010; Luna de Araujo,de等人,2012; Nikbin等人,2012 ,Kan等人,2014)。铜绿假单胞菌的致病因子,如外泌素A,外切酶S,化脓性蛋白酶,弹性蛋白酶和唾液酸酶等,都受到细胞间信号系统的强烈调节,从而导致其致病性(Cornelis等(1989),范德登(Van Delden)和伊格勒夫斯基(Iglewski),1998;哈利法(Kalifa)等人,2011)。铜绿假单胞菌的外膜蛋白在细菌-环境相互作用中并因此在致病性感染中起重要作用。铜绿假单胞菌对抗生素的固有抗性是外膜中存在特定蛋白质的结果,外膜影响细胞通透性。外膜脂蛋白OprL和OprI已经牵涉到这些外排转运系统中(De Vos等,1997; Matthijs,Khattab等,2015)。铜绿假单胞菌的鉴定是基于表型观察,如在选择性培养基上的生长,如西曲美琼脂,细菌酪蛋白氨基酸,血清分型和抗微生物试验。然而,其他革兰氏阴性杆菌,包括其他假单胞菌种类,可能会干扰铜绿假单胞菌的表型分型,这代表了患者治疗的缺点,特别是在抗微生物治疗和医院感染控制方面。基因分型方法解决了可变表型的问题,并且专门用于铜绿假单胞菌的鉴定。由于OprL和OprI蛋白仅在这种生物中发现,因此它们可能是快速鉴定临床样品中铜绿假单胞菌的可靠因素。 16S rDNA基因和肠细菌重复基因间共有序列(ERIC)已成功用于包括铜绿假单胞菌在内的多种微生物的流行病学研究(Stehling等人,2010).37铜绿假单胞菌

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号