首页> 外文期刊>The Cryosphere Discussions >Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
【24h】

Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear

机译:高温简单剪切过程中多晶冰的重结晶过程,微观结构和晶体学优选取向演变

获取原文
       

摘要

Torsion experiments were performed in polycrystalline ice at high temperature ( 0.97?Tsubm/sub ) to reproduce the simple shear kinematics that are believed to dominate in ice streams and at the base of fast-flowing glaciers. As clearly documented more than 30?years ago, under simple shear ice develops a two-maxima c axis crystallographic preferred orientation (CPO), which evolves rapidly into a single cluster CPO with a c axis perpendicular to the shear plane. Dynamic recrystallization mechanisms that occur in both laboratory conditions and naturally deformed ice are likely candidates to explain the observed CPO evolution. In this study, we use electron backscatter diffraction (EBSD) and automatic ice texture analyzer (AITA) to characterize the mechanisms accommodating deformation, the stress and strain heterogeneities that form under torsion of an initially isotropic polycrystalline ice sample at high temperature, and the role of dynamic recrystallization in accommodating these heterogeneities. These analyses highlight an interlocking microstructure, which results from heterogeneity-driven serrated grain boundary migration, and sub-grain boundaries composed of dislocations with a [c] -component Burgers vector, indicating that strong local stress heterogeneity develops, in particular, close to grain boundaries, even at high temperature and high finite shear strain. Based on these observations, we propose that nucleation by bulging, assisted by sub-grain boundary formation and followed by grain growth, is a very likely candidate to explain the progressive disappearance of the c axis CPO cluster at low angle to the shear plane and the stability of the one normal to it. We therefore strongly support the development of new polycrystal plasticity models limiting dislocation slip on non-basal slip systems and allowing for efficient accommodation of strain incompatibilities by an association of bulging and formation of sub-grain boundaries with a significant [c] component.
机译:在高温(0.97?T m )的多晶冰中进行扭转实验,以再现简单的剪切运动学,这些运动学被认为在冰流和快速流动的冰川基础上占主导地位。正如30多年前清楚记录的那样,在简单的剪切作用下,冰形成了两个最大值的c轴晶体学优选取向(CPO),该取向迅速演变为c轴垂直于剪切面的单簇CPO。在实验室条件和自然变形的冰中都发生的动态重结晶机制可能是解释观察到的CPO演变的候选者。在这项研究中,我们使用电子背散射衍射(EBSD)和自动冰质分析仪(AITA)来表征适应变形的机制,高温下初始各向同性多晶冰样品在扭转下形成的应力和应变异质性,以及其作用。适应这些异质性的动态重结晶过程。这些分析突出显示了互锁的微观结构,这是由异质性驱动的锯齿状晶界迁移和由具有[c]成分的Burgers矢量的位错组成的亚晶粒边界引起的,表明强烈的局部应力异质性发展,特别是靠近晶粒边界,即使在高温和高有限剪应变下也是如此。根据这些观察结果,我们认为通过鼓胀形核,辅以亚晶粒边界形成并随后晶粒长大,很可能是解释c轴CPO团簇在与剪切面和夹角低角度逐渐消失的原因。一个正常的稳定性就可以了。因此,我们大力支持新的多晶可塑性模型的开发,该模型可限制非基层滑移系统上的位错滑移,并通过凸出和形成具有重要[c]成分的亚晶粒边界来有效地适应应变不相容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号