首页> 外文期刊>The Cryosphere Discussions >Coupled land surfacea??subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra
【24h】

Coupled land surfacea??subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

机译:结合陆地表面—地下水文地球物理反演模型,以估算土壤有机碳含量并探索北极冻原中相关的水文和热力学

获取原文
       

摘要

pstrongAbstract./strong Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surfacea??subsurface hydrologicala??thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbona??climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrologicala??thermal processes associated with annual freezea??thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets a?? including soil liquid water content, temperature and electrical resistivity tomography (ERT) data a?? to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrologicala??thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surfacea??subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and icea??liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a??posteriori distributions of desired model parameters. For hydrologicala??thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrologicala??thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3span class="thinspace"/spanm of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6span class="thinspace"/spanm depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surfacea??subsurface, deterministica??stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrologicala??thermal dynamics./p.
机译:> >摘要。土壤有机碳(OC)含量的定量表征至关重要,因为它对地表土壤,地下水文,热过程和微生物的分解产生了显着影响。对于预测Carbona ??气候反馈很重要。尽管这种定量化在易受攻击的富含有机物的北极地区特别重要,但由于常规岩心取样和分析方法的普遍局限性以及与年度冻结相关的水文热过程的极度动态性,要实现这一目标具有挑战性。解冻事件。在这项研究中,我们开发并测试了可以灵活使用单个或多个数据集的反演方案。包括土壤液态水含量,温度和电阻率层析成像(ERT)数据估算OC含量的垂直分布。我们的方法基于以下事实:OC含量会极大地影响土壤水文热参数,因此间接控制土壤液态水含量,温度及其相关电阻率的时空动态。我们使用社区土地模型来模拟从基岩到冠层顶部的非等温地表a –地下水文动力学,并考虑了地表过程(例如,太阳辐射平衡,蒸散,积雪和融化)和冰–液态水相变。对于反演,我们结合使用确定性和自适应马尔可夫链蒙特卡洛(MCMC)优化算法来估计所需模型参数的后验分布。对于水文热力学到地球物理变量的转换,通过岩石物理和地球物理模型将模拟的地下温度,液态水含量和冰含量明确地与土壤电阻率联系起来。我们使用不同的数值实验验证了开发的方案,并评估了测量误差的影响以及联合反演对OC和其他参数估计的好处。我们还量化了不确定性从估计参数到水文热响应预测的传播。我们发现,与单个数据集的反演(温度,液态水含量或视电阻率)相比,这些数据集的联合反演显着降低了参数不确定性。我们发现,联合反演方法能够高度可靠地估算浅层活动层(土壤顶部0.3 class =“ thinspace”> m)内的OC和砂含量。由于浅层永久冻土(此处深度约为0.6m)内温度和水分的微小变化,因此该方法无法可靠地估算OC。但是,如果土壤孔隙度与OC和矿物质含量在功能上相关(通常在富含有机物的北极土壤中观察到),则在此深度的OC估算的不确定性会大大降低。我们的研究记录了新的地表以下,确定性的随机反演方法的价值,以及包括多种类型的数据以估算OC和相关的水文热力学的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号