...
首页> 外文期刊>PLoS One >Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
【24h】

Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism

机译:走向希瓦氏菌中的电合成:逆转还原代谢的Mtr途径的能量学。

获取原文
           

摘要

Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
机译:生物电化学系统依靠微生物将复杂的氧化/还原反应与电极联系起来。例如,在印度希瓦氏菌(Shewanella oneidensis)菌株MR-1中,由细胞色素和结构蛋白组成的电子转移管道(称为Mtr呼吸途径)催化电子从细胞质氧化反应流向电极。逆转该电子流以驱动微生物还原性代谢,为电合成高价值燃料和化学品提供了一条可能的途径。我们检查了从电极进入希瓦氏菌的电子流,以确定该过程的可行性,还原电子流的分子成分以及所需的驱动力。将富马酸酯添加到粘附在与标准氢电极(SHE)相对于-0.36 V的石墨电极上的黏附沙门氏菌的薄膜中会立即导致电子吸收,而缺少周质富马酸酯还原酶FccA的突变体无法利用电极进行富马酸酯还原。编码外膜细胞色素锚定蛋白MtrB的基因的删除消除了88%的富马酸酯减少。缺乏周质细胞色素MtrA的突变体表现出更严重的缺陷。出人意料的是,阻止menaquinone生物合成的menC破坏消除了85%的电子通量。删除与醌连接的细胞色素CymA编码的基因也有类似的负面影响,这表明电子主要从外膜细胞色素流入醌池,再回到周质FccA。可溶性氧化还原介体只能部分恢复突变体中的电子转移,这表明可溶性穿梭不能替代周质蛋白-蛋白相互作用。这项工作证明了Mtr途径可以促进还原反应,表明该导管在功能上是可逆的,并为不同的CymA:MtrA和CymA:FccA呼吸单元提供了新的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号