首页> 外文期刊>PLoS Computational Biology >Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
【24h】

Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses

机译:具有突触突触的神经元网络中微电路的自组织

获取原文
           

摘要

The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
机译:与简单的随机网络模型相比,皮质网络的突触连通性具有某些接线图样的过度表现。该结构部分地由突触可塑性形成,该突触可塑性根据神经元的联合突刺活动来促进或抑制神经元之间的连接。通常,理论研究集中在前馈输入如何驱动可塑性以创建这种网络结构上。我们研究了循环网络中自组织结构的互补情况,其中自发动力学驱动着与峰值时间相关的可塑性。通过结合快速峰值协方差和突触权重的缓慢演变,我们为网络结构的演变建立了一个自洽的理论。通过网络动力学的有限大小扩展,我们获得了一个低维的非线性微分方程组,用于二次突触连通性图案的演化。掌握了这一理论之后,我们探索了可塑性规则的形式如何驱动皮质网络中微电路的发展。当增强和抑制大致平衡时,突触动力学取决于加权的发散,收敛和链基序。对于加性希伯来STDP,这些基序相互作用会在突触动力学中产生不稳定性,从而促进或抑制初始网络结构。我们的工作为研究循环网络中的突波活动如何与突触可塑性相互作用以确定网络结构提供了一个一致的理论框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号