...
首页> 外文期刊>PLoS Computational Biology >How single neuron properties shape chaotic dynamics and signal transmission in random neural networks
【24h】

How single neuron properties shape chaotic dynamics and signal transmission in random neural networks

机译:单神经元特性如何塑造随机神经网络中的混沌动力学和信号传递

获取原文
           

摘要

Author summary Biological neural networks are formed by a large number of neurons whose interactions can be extremely complex. Such systems have been successfully studied using random network models, in which the interactions among neurons are assumed to be random. However, the dynamics of single units are usually described using over-simplified models, which might not capture several salient features of real neurons. Here, we show how accounting for richer single-neuron dynamics results in shaping the network dynamics and determines which signals are better transmitted. We focus on adaptation, an important mechanism present in biological neurons that consists in the decrease of their firing rate in response to a sustained stimulus. Our mean-field approach reveals that the presence of adaptation shifts the network into a previously unreported dynamical regime, that we term resonant chaos, in which chaotic activity has a strong oscillatory component. Moreover, we show that this regime is advantageous for the transmission of low-frequency signals. Our work bridges the microscopic dynamics (single neurons) to the macroscopic dynamics (network), and shows how the global signal-transmission properties of the network can be controlled by acting on the single-neuron dynamics. These results paves the way for further developments that include more complex neural mechanisms, and considerably advance our understanding of realistic neural networks.
机译:作者摘要生物神经网络是由大量神经元组成的,它们之间的相互作用可能非常复杂。已经使用随机网络模型成功地研究了这样的系统,其中假定神经元之间的相互作用是随机的。但是,通常使用过于简化的模型来描述单个单元的动力学,该模型可能无法捕获真实神经元的几个显着特征。在这里,我们展示了如何考虑更丰富的单神经元动力学,从而形成网络动力学并确定哪些信号可以更好地传输。我们专注于适应,这是生物神经元中存在的一种重要机制,在于其对持续刺激做出反应的放电率降低。我们的平均场方法表明,适应的存在将网络转变为以前未报告的动力学状态,我们称其为共振混沌,其中混沌活动具有很强的振荡成分。此外,我们证明了这种方式对于低频信号的传输是有利的。我们的工作将微观动力学(单神经元)与宏观动力学(网络)联系起来,并展示了如何通过作用于单神经元动力学来控制网络的全局信号传输特性。这些结果为包括更复杂的神经机制在内的进一步发展铺平了道路,并大大提高了我们对现实神经网络的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号