首页> 外文期刊>Plant Biotechnology Journal >Joint?¢????linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize
【24h】

Joint?¢????linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize

机译:联合连锁图谱和GWAS揭示了广泛的遗传基因座,可调节玉米中雄性花序的大小

获取原文
           

摘要

Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 ( ra3 ), Thick tassel dwarf1 ( td1 ), tasselseed2 ( ts2 ), liguleless2 ( lg2 ), ramosa1 ( ra1 ), barren stalk1 ( ba1 ), branch silkless1 ( bd1 ) and tasselseed6 ( ts6 ). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O?¢????methyl?¢????transferase (e.g. GRMZM2G147491), helix?¢????loop?¢????helix (HLH) DNA?¢????binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP?¢????box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.
机译:雄性花序大小不足和过多都会导致玉米产量下降。雄性花序遗传结构的知识对于实现玉米育种的最佳花序大小至关重要。在这项研究中,我们使用了大约八千个近交系,包括连锁种群和关联种群,来解剖雄性花序的遗传结构。联系人口包括美国发展的25个家庭和中国发展的11个家庭。每个家族包含大约200个重组自交系(RIL)。该协会的人口包括来自美国和中国的大约1000个不同的系。通过测序或微阵列对所有自交系进行基因分型。花序大小被测量为流苏初级分支数(TBN)和流苏长度(TL)。通过连锁分析,共鉴定出125个数量性状基因座(QTL)(TBN为63,TL为62)。此外,通过全基因组研究(GWAS)在高于5%阈值的自举后验概率(BPP)中鉴定出965个定量性状核苷酸(QTN)。这些QTL / QTN包括使用突变体克隆的24个已知基因,例如Ramosa3(ra3),Thasselseed dwarf1(td1),tasselseed2(ts2),liguleless2(lg2),ramosa1(ra1),贫瘠茎秆(ba1)分支, Silkless1(bd1)和tasselseed6(ts6)。新鉴定的基因编码锌转运蛋白(例如GRMZM5G838098和GRMZM2G047762),在末端区域蛋白中的适应性(例如GRMZM5G885628),O 2-α2甲基α2-转移酶(例如GRMZM2G147491),螺旋α2-β3。环(螺旋)(HLH)DNA结合蛋白(例如GRMZM2G414252和GRMZM2G042895)和SBPα盒蛋白(例如GRMZM2G058588)。这些结果提供了广泛的遗传信息,以剖析花序大小的遗传结构,以提高玉米产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号