...
首页> 外文期刊>Physical Review X >Electrocaloric Cooling Cycles in Lead Scandium Tantalate with True Regeneration via Field Variation
【24h】

Electrocaloric Cooling Cycles in Lead Scandium Tantalate with True Regeneration via Field Variation

机译:钽Field钽酸铅的电热冷却循环,通过场变化实现真正的再生

获取原文
           

摘要

There is growing interest in heat pumps based on materials that show thermal changes when phase transitions are driven by changes of electric, magnetic, or stress field. Importantly, regeneration permits sinks and loads to be thermally separated by many times the changes of temperature that can arise in the materials themselves. However, performance and parameterization are compromised by net heat transfer between caloric working bodies and heat-transfer fluids. Here, we show that this net transfer can be avoided—resulting in true, balanced regeneration—if one varies the applied electric field while an electrocaloric (EC) working body dumps heat on traversing a passive fluid regenerator. Our EC working body is represented by bulk PbSc 0.5 Ta 0.5 O 3 near its first-order ferroelectric phase transition, where we record directly measured adiabatic temperature changes of up to 2.2?K. Indirectly measured adiabatic temperature changes of similar magnitude are identified, unlike normal, from adiabatic measurements of polarization, at nearby measurement set temperatures, without assuming a constant heat capacity. The resulting high-resolution field-temperature-entropy maps of our material, and a small clamped companion sample, are used to construct cooling cycles that assume the use of an ideal passive regenerator in order to span ≤ 20 K . These cooling cycles possess well-defined coefficients of performance that are bounded by well-defined Carnot limits, resulting in large ( 50 % ) well-defined efficiencies that are not unduly compromised by a small field hysteresis. Our approach permits the limiting performance of any caloric material in a passive regenerator to be established, optimized, and compared; provides a recipe for true regeneration in prototype cooling devices; and could be extended to balance active regeneration.
机译:当基于电场,磁场或应力场的变化驱动相变时,基于材料的热泵会显示出热变化,因此人们对热泵的兴趣日益增长。重要的是,再生可以使下沉和载荷通过材料本身可能发生的温度变化的许多倍进行热隔离。但是,热量工作体与传热流体之间的净传热会影响性能和参数设置。在这里,我们表明,如果改变施加的电场,而电热(EC)工作体在通过被动式流体再生器时产生热量,则可以避免这种净传递,从而实现真正的平衡再生。我们的EC工作体以一阶铁电相变附近的大块PbSc 0.5 Ta 0.5 O 3表示,我们在其中记录了直接测量的绝热温度变化,最高可达2.2?K。在不假设恒定热容的情况下,在附近的测量设定温度下,通过极化的绝热测量,可以识别出间接测量的相似大小的绝热温度变化,这与正常情况不同。由此产生的材料的高分辨率场温度-熵图以及一个较小的钳位伴侣样品,被用于构建冷却循环,这些冷却循环假设使用理想的被动蓄热器,以跨越≤20K。这些冷却循环具有定义明确的性能系数,该系数受定义明确的卡诺极限限制,从而产生了较大的定义效率(大于50%),不会因较小的磁场滞后而受到不利影响。我们的方法允许建立,优化和比较无源再生器中任何热量材料的极限性能。提供原型冷却设备中真正再生的方法;并可以扩展以平衡主动再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号