首页> 外文期刊>Spectroscopy >FTIR and UV?vis study of chemically engineered biomaterial surfaces for protein immobilization
【24h】

FTIR and UV?vis study of chemically engineered biomaterial surfaces for protein immobilization

机译:用于蛋白质固定化的化学工程生物材料表面的FTIR和UV?vis研究

获取原文
           

摘要

The biomaterials research field has broadened in the last 3 decades, including replacement of diseased or damaged parts, assist in healing, correct and improve functional abnormality, drug delivery systems, immunological kits and biosensors. Proteins play crucial role in almost every biological system. They are involved in enzymatic catalysis, transport and storage, coordinated motion, mechanical support, immune protection, control of growth and cell differentiation among many others. The immobilization of proteins onto surface functionalized substrates has been one of the most promising areas in bioengineering field. It is important to note that the term immobilization can refer either to a temporary or to a permanent localization of the biomolecule on or within a support. Proteins have very particular chain configurations and conformations that promote high levels of specificity during chemical interactions. In the present work, we aimed to study the phenomenon of protein immobilization onto biomaterial with chemically engineered surface. We have tailored the surface of the porous gels of SiO2with 5 different silane surface modifying agents: tetraethoxysilane (TEOS), 3?mercaptopropyltrimethoxysilane (MPTMS) and 3?aminopropyltriethoxysilane (APTES), 3?glycidoxypropyltrimethoxysilane (GPTMS) and 3?isocyanatopropyltriethoxysilane (ICPES). Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize the presence of all specific chemical groups in the materials. The surface functionalized gels were then immersed in porcine insulin (PI) solutions for protein immobilization. The incorporation of protein within the gels was also monitored by FTIR spectroscopy. The kinetics of protein adsorption and desorption from the gel matrixin vitrotests were monitored by UV?visible spectroscopy. We could not observe any evidence of denaturation of insulin after its desorption from gel matrices using UV?visible spectroscopy technique.In vivotests with adult male rats were used to verify the immobilized insulin bioactivity after implantation of different biomaterial with functionalized surfaces. Plasma glucose levels were obtained by using the Glucose GOD?ANA Colorimetric Assay. All surface modified materials have presented acute hypoglycemic peak response associated with the insulin bioactivity.
机译:在过去的30年中,生物材料的研究领域不断扩大,包括更换患病或受损的零件,协助愈合,纠正和改善功能异常,药物输送系统,免疫学套件和生物传感器。蛋白质几乎在每个生物系统中都起着至关重要的作用。它们参与酶催化,运输和储存,协调运动,机械支持,免疫保护,生长控制和细胞分化等诸多方面。将蛋白质固定在表面功能化的基质上一直是生物工程领域中最有前途的领域之一。重要的是要注意,术语固定化可以是指生物分子在支持物上或支持物内的暂时或永久定位。蛋白质具有非常特殊的链构型和构象,可在化学相互作用中促进高水平的特异性。在目前的工作中,我们旨在研究蛋白质固定在具有化学工程表面的生物材料上的现象。我们使用5种不同的硅烷表面改性剂定制了SiO2多孔凝胶的表面:四乙氧基硅烷(TEOS),3?巯基丙基三甲氧基硅烷(MPTMS)和3?氨基丙基三乙氧基硅烷(APTES),3?环氧丙氧基丙基三甲氧基硅烷(GPTMS)和3?异氰酸根合丙基三乙氧基硅烷(ICPES) 。傅里叶变换红外光谱(FTIR)用于表征材料中所有特定化学基团的存在。然后将表面官能化的凝胶浸入猪胰岛素(PI)溶液中以固定蛋白质。还通过FTIR光谱法监测蛋白质在凝胶中的掺入。通过紫外可见光谱监测体外测试中蛋白质从凝胶基质中吸附和解吸的动力学。我们没有观察到使用紫外可见光谱技术从凝胶基质中解吸胰岛素后胰岛素变性的任何证据。用成年雄性大鼠的体内试验验证了植入具有功能化表面的不同生物材料后固定的胰岛素生物活性。通过使用葡萄糖GOD-ANA比色测定获得血浆葡萄糖水平。所有表面改性的材料均表现出与胰岛素生物活性相关的急性降血糖峰反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号