首页> 外文期刊>Oeno One >Integration of omics and system biology approaches to study grapevine ( Vitis vinifera L.) response to salt stress: a perspective for functional genomics - A review
【24h】

Integration of omics and system biology approaches to study grapevine ( Vitis vinifera L.) response to salt stress: a perspective for functional genomics - A review

机译:整合组学和系统生物学方法研究葡萄(Vitis vinifera L.)对盐胁迫的响应:功能基因组学的观点-综述

获取原文
           

摘要

The ability of plants to modify their behavior appropriately in response to salt stress is a major factor in their adaptation to this specific constraint. To date, environmental constraints, including salinity, become more and more unfavorable especially for glycophytes such as grapevines. Salt tolerance is a complex physiological and multigenic trait. Studying the functional networks of transcriptome, proteome and metabolome of grapevine plants subjected to salinity may help to identify candidate genes associated with salt tolerance mechanisms. Thus, the integration of omics tools (i.e., genomics, proteomics and metabolomics) with physiological approaches allows better understanding of the grapevine plant response and developing efficient markerassisted selection strategies in order to generate salt stress resistant grapevine varieties. In this review, research progress in grapevine responses to salt stress is discussed, highlighting the importance of the system biology approach for identifying molecular regulatory networks leading to a better adaptation ability of grapevine to salt stress. IntroductionPlants are permanently subjected to various types of stresses: osmotic, ionic, water and salt (Munns et al., 2006; Chadli and Belkhodja, 2007). Salinity affects about 10% of the land in the world (Cheong and Yun, 2007). The salinization registered in the arid and semi-arid ecosystems results from high soil water evaporation (Munns et al., 2006), irregular and insufficient rainfall (Mezni et al., 2002), as well as the use of poor quality water. Consequently, crop production with an appreciable yield becomes a challenge under these conditions. Therefore, a global understanding of plant mechanisms involved in salt stress adaptation is required. Plant response to salt stress occurs at various levels: molecular, cellular and physiological (Yamaguchi-Shinozaki et al., 2002). Tolerance to abiotic stresses is a complex feature influenced by the coordinated and differential expression of a group of genes (Chen et al., 2002). In general, several modifications are expected to be activated as a response to abiotic stresses (Jain et al., 2001). Recently, progress has been made in the functional genomics of grapevine following the whole genome sequencing and assembling of Vitis vinifera PN40024 reference genome (Jaillon et al., 2007). Global analyses have become possible with the development of high throughput genomic technologies which facilitated the identification of putative gene function. In parallel, methods have been developed for quantitative data acquisition: microarrays are used to quantitatively assess the transcriptome (Schena et al., 1995). However, the recent advent of high throughput-based sequencing technologies has revolutionized the analysis of transcriptomes (Morozova and Marra, 2008). In fact, RNA sequencing (RNA-Seq) involves direct sequencing of complementary DNAs (cDNAs) followed by mapping of the sequencing reads to the reference genome. It allows for the precise quantification of exon expression, generating absolute rather than relative gene expression measurements, providing greater insight and accuracy than microarrays (Cloonan et al., 2008; Mortazavi et al., 2008; Wang et al., 2009). Furthermore, it can detect and measure rare transcripts with frequencies as low as 1 to 10 RNA molecules per cell (Mortazavi et al., 2008). In this context, Next-Gen sequencing technologies have emerged, such as 454 (Margulies et al., 2005) or Illumina (Bennett, 2004) technologies. For example, the Illumina RNA-Seq method was successfully used by Zenoni et al. (2010) to analyze the global grapevine transcriptome during berry development. In proteomics, two-dimensional gels have routinely been used for proteome studies (O’Farrell, 1975). Recently, gel-free technologies have emerged, such as ICAT (Gygi et al., 1999) or iTRAQ (Ross et al., 2004). Metabolome studies are performed with a variety of tools such as gas chromatography or high performance liquid chromatography for the separation of the metabolites and mass spectrometry and nuclear magnetic resonance for the identification and quantification of the metabolites (Fiehn, 2002). This progress opened up a new investigation field, omics, from which many transcriptomic (Tattersall et al., 2007; Daldoul et al., 2010), proteomic (Vincent et al., 2007; Jellouli et al., 2008; Grimplet et al., 2009a; Cramer, 2010; Cramer et al., 2013), interactomic (?arná et al., 2012), metabolomic (Cramer et al., 2007; Deluc et al., 2009; Hochberg et al., 2013) and candidate gene approaches (Hanana et al., 2007; Hanana et al., 2008) were developed. The present review underlines the integration of the different omics tools with physiological and eco-physiological approaches and their subsequent incorporation into functional networks in order to better understand the mechanisms involved in grapevine salt tolerance.Physiological responses of grapevine to salt stressGrapevine (Vitis vinife
机译:植物适应盐胁迫而适当改变其行为的能力是其适应该特定限制的主要因素。迄今为止,包括盐度在内的环境限制变得越来越不利,尤其是对于糖类植物,例如葡萄树。耐盐性是复杂的生理和多基因性状。研究遭受盐碱化的葡萄植物的转录组,蛋白质组和代谢组的功能网络可能有助于鉴定与盐耐性机制相关的候选基因。因此,将组学工具(即基因组学,蛋白质组学和代谢组学)与生理学方法相结合,可以更好地了解葡萄植物的反应,并开发有效的标记辅助选择策略,以产生耐盐胁迫的葡萄品种。在这篇综述中,讨论了葡萄对盐胁迫的响应的研究进展,强调了系统生物学方法对于鉴定分子调控网络的重要性,该分子调控网络可导致葡萄对盐胁迫具有更好的适应能力。简介植物长期受到各种类型的压力:渗透,离子,水和盐分(Munns等人,2006年; Chadli和Belkhodja,2007年)。盐度影响着全世界约10%的土地(Cheong和Yun,2007)。干旱和半干旱生态系统中的盐渍化是由于土壤水分蒸发高(Munns等,2006),降雨不规律和降雨不足(Mezni等,2002)以及使用劣质水造成的。因此,在这些条件下,具有可观产量的农作物生产成为挑战。因此,需要对与盐胁迫适应有关的植物机制有一个全面的了解。植物对盐胁迫的反应发生在不同的水平:分子,细胞和生理水平(Yamaguchi-Shinozaki等,2002)。对非生物胁迫的耐受性是受一组基因的协调和差异表达影响的复杂特征(Chen等,2002)。通常,人们预期会响应非生物胁迫而激活多种修饰(Jain等,2001)。最近,在对葡萄进行​​全基因组测序和装配葡萄(Vitis vinifera)PN40024参考基因组后,葡萄的功能基因组学取得了进展(Jaillon et al。,2007)。随着高通量基因组技术的发展,全球分析已成为可能,这促进了推定基因功能的鉴定。同时,已经开发了用于定量数据采集的方法:微阵列用于定量评估转录组(Schena等,1995)。然而,基于高通量的测序技术的最新出现彻底改变了转录组的分析方法(Morozova和Marra,2008)。实际上,RNA测序(RNA-Seq)涉及对互补DNA(cDNA)进行直接测序,然后将测序读数映射到参考基因组。它允许对外显子表达进行精确定量,产生绝对而不是相对的基因表达测量值,比微阵列提供更高的洞察力和准确性(Cloonan等,2008; Mortazavi等,2008; Wang等,2009)。此外,它可以检测和测量频率低至每个细胞1至10个RNA分子的稀有转录本(Mortazavi等,2008)。在这种情况下,出现了新一代测序技术,例如454(Margulies等,2005)或Illumina(Bennett,2004)技术。例如,Zenoni等人成功地使用了Illumina RNA-Seq方法。 (2010)分析了浆果发育过程中的全球葡萄转录组。在蛋白质组学中,二维凝胶通常用于蛋白质组学研究(O’Farrell,1975)。最近,出现了无凝胶技术,例如ICAT(Gygi等,1999)或iTRAQ(Ross等,2004)。代谢组学研究使用多种工具进行,例如气相色谱法或高效液相色谱法用于代谢物的分离以及质谱法和核磁共振法用于代谢物的鉴定和定量(Fiehn,2002)。这一进展开辟了一个新的研究领域,即组学,从中许多转录组学(Tattersall等人,2007; Daldoul等人,2010),蛋白质组学(Vincent等人,2007; Jellouli等人,2008; Grimplet等人) ,2009a; Cramer,2010; Cramer等人,2013),交互组学(?arná等人,2012),代谢组学(Cramer等人,2007; Deluc等人,2009; Hochberg等人,2013)并开发了候选基因方法(Hanana等,2007; Hanana等,2008)。本综述强调了将不同的组学工具与生理学和生态生理学方法相集成,并随后将其整合到功能网络中,以更好地了解葡萄耐盐性的机制。葡萄对盐胁迫的生理反应葡萄(葡萄)

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号