首页> 外文期刊>Oeno One >Anthocyanin composition in Carignan and Grenache grapes and wines as affected by plant vigor and bunch uniformity
【24h】

Anthocyanin composition in Carignan and Grenache grapes and wines as affected by plant vigor and bunch uniformity

机译:卡里尼昂和歌海娜葡萄和葡萄酒中的花色苷成分受植物活力和束均匀度的影响

获取原文
           

摘要

Aims: To determine the anthocyanin composition in Carignan and Grenache grapes and wines as affected by vintage, plant vigor and bunch uniformity.Methods and results: Anthocyanin composition of Carignan and Grenache grapes and wines were analysed by chromatographic techniques considering the influence of two different vigor levels over two vintages. The heterogeneity in the distal parts of the bunch was also taken into account. Warm vintage was better for the accumulation of anthocyanins. However, each variety responsed differently according to vine vigor. Grenache anthocyanin synthesis decreased in low vigor (weak) vines, whereas Carignan anthocyanin content depended on vigor, berry size, rootstock and vintage. In both varieties, but more significantly in Carignan, there was a tendency to accumulate acylated anthocyanins in bottom berries.Conclusion: Carignan anthocyanin concentration was increased in low vigor plants, where clusters received greater sun exposure, unlike Grenache, where better canopy management in the fruit zone is necessary. Avoiding the poor growing conditions for Grenache in the region and improving the canopy/fruit ratio deserves careful consideration in order to reach optimal anthocyanin content.Significance and impact of the study: Knowledge of anthocyanin accumulation according to both plant vigor and bunch ripeness is of major importance to determine the optimal harvest date for each cultivar and thus improve the quality of wine. IntroductionGrapes of red varieties contain large amounts of anthocyanin compounds in the skins, and sometimes in the pulp too. These anthocyanins are partially extracted during winemaking. For the European Vitis vinifera species, there are five monoglucoside anthocyanins and their corresponding acylate derivatives (acetyl and p-coumaryl); malvidin-3-O-glucoside is the most abundant anthocyanin (Pomar et al. 2005), although in some varieties peonidin-3-O-glucoside predominates (Mattivi et al. 2006). The evolution of anthocyanins during veraison and ripening corresponds to different enzymatic activities at the cellular level (Castellarín et al. 2011). In He et al. (2010)’s review, two synthetic pathways were described from naringenin flavanone: one that generates anthocyanidin cyanidin from the action of F3'H (flavonoid 3'-hydroxylase), DFR (dihydroflavonol 4-reductase) and ANS (anthocyanidin syntase) and another that generates anthocyanidin delphinidin from the action of F3'5'H (flavonoid 3', 5'-hydroxylase), DFR and ANS. The action of UFGT (UDP glucose:flavonoid-3-O-glucosyltransferase) generates cyanidin-3-O-glucoside from cyanidin and, finally, peonidin-3-O-glucoside by the action of OMT (O-methyltransferase). UFGT also synthesizes delphinidin-3-O-glucoside from delphinidin and the action of OMT generates petunidin-3-O-glucoside and malvidin-3-O-glucoside. At the end of the ripening process, the synthesis and accumulation of the non-acylated anthocyanins is slowed down or even stopped whereas there is some increase with the acylated derivatives (p-coumarylated and/or acetylated) (González-San José and Díez 1992, Jordao et al. 1998, Ryan and Revilla 2003).Anthocyanin composition depends on the interaction between climate, soil, viticultural practices and genotype (Jackson and Lombard 1993, Downey et al. 2006), which involves variations in the expression of genes coding for different enzymes (Yamane et al. 2006). Canopy management modifies the growth and structure of the vine, causing changes in exposure to solar radiation and temperature in the fruit zone (Smart 1985, Smart 1987, Bergqvist et al. 2001). Dense canopies increase the level of shading in the fruit zone, causing a reduction in the activity of F3'5'H or an increase in the activity of F3'H and hence an increase in the concentration of dioxygenated anthocyanins: peonidin-3-O-glucoside and cyanidin-3-O-glucoside (Downey et al. 2004). Some authors, however, found quite the opposite result in colder weather conditions, such as in northern Italy (Chorti et al. 2010) and north-eastern United States (Tarara et al. 2008). Temperature is also a factor that alters the biosynthetic pathway of dioxygenated or trioxygenated (malvidin-3-O-glucoside, petunidin-3-O-glucoside, and delphinidin-3-O-glucoside) anthocyanins. According to Cohen et al. (2008), the proportion of dioxygenated anthocyanins should increase under conditions of low daytime temperatures. Conversely, Guidoni et al. (2008) referred to the sensitivity of the enzyme F3'H to temperature in order to justify the high concentrations of dioxygenated anthocyanins found in Nebbiolo grapes during a warm year as opposed to a cool year.The distribution of anthocyanins between the acylated and non-acylated forms is altered by the combination of temperature and solar radiation. This is because acyltransferase activity increases with temperature (Haselgrove et al. 2000, Spayd et al. 2002). This combination is complex because it can be synergistic if the te
机译:目的:确定卡拉尼昂和歌海娜葡萄和葡萄酒中花青素的组成受年份,植物活力和束均匀度的影响。方法和结果:考虑两种不同活力的影响,通过色谱技术分析了卡拉尼昂和歌海娜葡萄和葡萄酒中的花青素组成超过两个年份。还考虑了束末端的异质性。温暖的年份更适合花青素的积累。但是,每个品种根据藤本植物的活力做出不同反应。低活力(弱)葡萄藤中的歌海娜花色苷合成减少,而卡里尼昂花色苷含量取决于活力,浆果大小,砧木和陈年。在这两个品种中,但在Cari​​gnan中更明显,倾向于在底部浆果中积累酰化花色苷。结论:低活力植物中Carignan花色苷的浓度增加,与Grenache不同,该簇在阳光下的暴露量更大,在Grenache中,树冠的管理更好水果区是必要的。为了达到最佳的花色苷含量,应避免在该地区生长Grenache恶劣的生长条件并提高冠层/果实的比率。研究的意义和影响:了​​解根据植物活力和束成熟度而积累的花色苷含量非常重要。确定每种品种的最佳收获日期,从而提高葡萄酒质量的重要性。简介红色品种的葡萄皮在皮肤中有时在果肉中也含有大量的花青素化合物。这些花色苷在酿酒过程中被部分提取。对于欧洲葡萄品种,有五个单葡糖苷花色苷及其相应的酰化物衍生物(乙酰基和对香豆基); malvidin-3-O-葡萄糖苷是最丰富的花色苷(Pomar等,2005),尽管在某些品种中,peonidin-3-O-葡萄糖苷占主导(Mattivi等,2006)。花青素在定性和成熟过程中的进化与细胞水平的不同酶促活性相对应(Castellarín等人,2011)。在何等人。 (2010)的综述中,柚皮素黄烷酮描述了两种合成途径:一种是通过F3'H(类黄酮3'-羟化酶),DFR(二氢黄酮醇4-还原酶)和ANS(原花青素合酶)的作用而产生花青素氰化素的。另一个可通过F3'5'H(类黄酮3',5'-羟化酶),DFR和ANS的作用生成花色素苷delphinidin。 UFGT(UDP葡萄糖:类黄酮-3-O-葡糖基转移酶)的作用从花青素中生成花青素-3-O-糖苷,最后在OMT(O-甲基转移酶)的作用下生成peonidin-3-O-葡糖苷。 UFGT还可以从delphinidin合成delphinidin-3-O-糖苷,OMT的作用会生成petunidin-3-O-糖苷和Malvidin-3-O-糖苷。在成熟过程结束时,未酰化的花色苷的合成和积累被减缓甚至停止,而酰化的衍生物(对-香豆素化和/或乙酰化)则有所增加(González-SanJosé和Díez1992) (Jordao等,1998; Ryan和Revilla,2003)。花色苷的组成取决于气候,土壤,葡萄栽培方法和基因型之间的相互作用(Jackson和Lombard,1993; Downey等,2006),这涉及编码基因表达的变化。用于不同的酶(Yamane等,2006)。冠层管理改变了葡萄藤的生长和结构,导致果区暴露于太阳辐射和温度的变化(Smart 1985,Smart 1987,Berqvist等,2001)。茂密的树冠会增加果实区域的阴影水平,导致F3'5'H的活性降低或F3'H的活性增加,从而使双加氧花色苷的浓度增加:peonidin-3-O -葡糖苷和花青素-3-O-葡糖苷(Downey等人,2004)。但是,有些作者在寒冷的天气条件下却发现了相反的结果,例如在意大利北部(Chorti等,2010)和美国东北部(Tarara等,2008)。温度也是改变双氧合或三氧合(花青素-3-O-葡糖苷,petunidin-3-O-葡糖苷和delphinidin-3-O-葡糖苷)花青素的生物合成途径的因素。据科恩等。 (2008年),在白天温度较低的条件下,双氧合花色苷的比例应增加。相反,Guidoni等。 (2008年)提到了F3'H酶对温度的敏感性,以证明在炎热的年份而不是凉爽的年份在Nebbiolo葡萄中发现高浓度的双加氧花色苷。温度和太阳辐射的结合会改变酰化形式。这是因为酰基转移酶活性随温度增加而增加(Haselgrove等,2000; Sayd等,2002)。这种组合很复杂,因为如果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号