首页> 外文期刊>Oeno One >Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine
【24h】

Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine

机译:结合生态生理模型和遗传分析:解析葡萄中复杂适应性状的有前途的方法

获取原文
           

摘要

Designing genotypes with acceptable performance under warmer or drier environments is essential for sustainable crop production in view of climate change. However, this objective is not trivial for grapevine since traits targeted for genetic improvement are complex and result from many interactions and trade-off between various physiological and molecular processes that are controlled by many environmental conditions. Integrative tools can help to understand and unravel these Genotype × Environment interactions. Indeed, models integrating physiological processes and their genetic control have been shown to provide a relevant framework for analyzing genetic diversity of complex traits and enhancing progress in plant breeding for various environments. Here we provide an overview of the work conducted by the French LACCAVE research consortium on this topic. Modeling abiotic stress tolerance and fruit quality in grapevine is a challenging issue, but it will provide the first step to design and test in silico plants better adapted to future issues of viticulture. Introduction Exploiting genetic diversity or designing new scion varieties and rootstocks with better performance under water stress or high temperature is one of the possible paths to sustain high-quality viticulture in view of future climate change (Duchêne, 2016). However, this breeding challenge is not trivial for perennial fruit crops, including grapevine, since the main traits targeted for genetic improvement (e.g. plant growth and tolerance to abiotic stresses, yield, fruit quality) are quantitative and complex, as they result from many interactions and trade-off between various physiological and molecular processes that (i) act at different temporal, spatial and structural scales and (ii) depend on environmental conditions and management strategies.Ecophysiological process-based models (PBMs) can predict quantitative traits of one genotype in any environment, whereas quantitative trait locus (QTL) models predict the contribution of alleles under a limited number of environments (Tardieu, 2003). Approaches combining both ecophysiological modeling and QTL analyses have been developed recently (Hammer et al., 2006; Reymond et al., 2003; Yin et al., 1999), essentially in annual crops, to overcome the strong G×E interactions in the control of complex traits in plants and to improve QTL detection power. The method dissects the genotypic variation of a given complex trait into simpler ecophysiological model parameters linked to key underlying processes involved in this trait. Then, co-localization (or absence thereof) between QTLs for the trait and QTLs for model parameters can give new insights into the contribution of processes involved in the trait. Hence, it may help in the choice of candidate genes, or may give clues about the genomic regions to be combined in an ideotype. This approach is particularly well suited for studying plant adaptive responses to diverse environmental conditions (Prudent et al., 2011). It appears as a valuable tool to help make informed decisions with regard to genotypic adaptation options and ideotype design in the context of climate change (Ramirez-Villegas et al., 2015).Such an approach combining ecophysiological modeling and genetic analyses is still in infancy in the international grape community (Duchêne et al., 2012; Marguerit et al., 2012). We report here some of the pioneering work from the French LACCAVE research consortium on this topic. Models developed for plant drought response and berry sugar accumulation are outlined. These models consist of simple response curves for one trait or are able to simulate more complex physiological processes. Genetic parameters were defined and their variations among genotypes or segregating populations analyzed. The potential use of such models to simulate grapevine ideotype behavior under future climatic conditions is discussed. Gene-by-gene breeding approach remains elusive for complex traits in grapes Over the past century, conventional plant breeding has been used successfully to improve several crops. With the recent progress in molecular technologies for genome sequencing and functional genomics, genes have become tangible rather than virtual entities (Hammer et al., 2006). It is widely anticipated that a gene-by-gene approach will improve plant breeding efficiency. Indeed, there have been successes in developing plants that are more resistant to pests or tolerant to herbicides. Those cases involved single-gene transformations where plant phenotypic response scaled directly from the level of molecular action. However, this has not yet been extended to key complex traits where relationships among components and their genetic control involve quantitative multi-gene interactions (Tardieu, 2003).In grapes, up to now, few physiological functions have been clearly related to known gene sequences, and the tremendous progress in gene discovery has only weakly aided genetic sele
机译:考虑到气候变化,设计基因型在温暖或干燥的环境下具有可接受的性能对于可持续作物生产至关重要。然而,这个目标对于葡萄来说并非微不足道,因为针对遗传改良的性状是复杂的,并且是由受许多环境条件控制的各种生理和分子过程之间的许多相互作用和权衡所导致的。集成工具可以帮助理解和阐明这些基因型×环境的相互作用。的确,整合生理过程及其遗传控制的模型已显示出为分析复杂性状的遗传多样性和增强各种环境下植物育种的进展提供了相关框架。在这里,我们概述了法国LACCAVE研究联盟在此主题上所做的工作。在葡萄树中对非生物胁迫耐受性和果实品质进行建模是一个具有挑战性的问题,但是它将为设计和测试更好地适应未来葡萄栽培问题的硅质植物提供第一步。引言鉴于未来的气候变化,开发遗传多样性或设计新的接穗品种和砧木,使其在水分胁迫或高温下表现更好,这是维持高质量葡萄栽培的可能途径之一(Duchêne,2016)。然而,这种育种挑战对于包括葡萄树在内的多年生水果作物而言并非微不足道,因为针对遗传改良的主要特征(例如植物生长和对非生物胁迫的耐受性,产量,果实品质)是定量且复杂的,因为它们是许多相互作用的结果(i)在不同的时间,空间和结构尺度上起作用以及(ii)取决于环境条件和管理策略的各种生理和分子过程之间的权衡。基于生态生理过程的模型(PBM)可以预测一种基因型的定量性状在任何环境中,定量性状基因座(QTL)模型都可预测等位基因在有限环境中的贡献(Tardieu,2003年)。最近已经开发了将生态生理模型和QTL分析相结合的方法(Hammer等人,2006; Reymond等人,2003; Yin等人,1999),主要是在一年生作物中,以克服作物中的强G×E相互作用。控制植物的复杂性状并提高QTL检测能力。该方法将给定复杂性状的基因型变异分解为与该性状涉及的关键基础过程相关的更简单的生态生理模型参数。然后,性状的QTL与模型参数的QTL之间的共定位(或不存在)可以为性状涉及的过程的贡献提供新的见解。因此,它可以帮助选择候选基因,或者可以提供有关将要以表型结合的基因组区域的线索。这种方法特别适合研究植物对各种环境条件的适应性反应(Prudent等,2011)。它似乎是帮助在气候变化的背景下做出有关基因型适应选择和表型设计的明智决定的有价值的工具(Ramirez-Villegas et al。,2015)。这种将生态生理模型和遗传分析相结合的方法仍处于初期阶段在国际葡萄界(Duchêne等,2012; Marguerit等,2012)。我们在此报告了法国LACCAVE研究联盟在此主题上的一些开拓性工作。概述了为植物干旱响应和浆果糖积累而开发的模型。这些模型由一个特征的简单响应曲线组成,或者能够模拟更复杂的生理过程。定义了遗传参数,并分析了它们在基因型或隔离种群之间的变异。讨论了这种模型在未来气候条件下模拟葡萄意识型行为的潜在用途。逐个基因育种方法对于葡萄的复杂性状仍然难以捉摸。在过去的一个世纪中,常规植物育种已成功用于改善几种作物。随着用于基因组测序和功能基因组学的分子技术的最新进展,基因已变得有形而不是虚拟实体(Hammer等,2006)。广泛预期的是,逐基因方法将提高植物育种效率。实际上,已经成功开发了对害虫具有更强抵抗力或对除草剂具有耐受性的植物。这些案例涉及单基因转化,其中植物表型反应直接从分子作用的水平扩展。但是,这还没有扩展到关键的复杂性状,即各组成部分之间的关​​系及其遗传控制涉及定量的多基因相互作用(Tardieu,2003)。到目前为止,在葡萄中,几乎没有生理功能与已知基因序列明确相关,而基因发现的巨大进步仅对遗传选择提供了微弱的帮助

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号