首页> 外文期刊>Oeno One >Leaf-to-fruit ratio affects the impact of foliar-applied nitrogen on N accumulation in the grape must
【24h】

Leaf-to-fruit ratio affects the impact of foliar-applied nitrogen on N accumulation in the grape must

机译:叶果比影响叶面施氮对葡萄汁中氮积累的影响

获取原文
           

摘要

Aims: Agroscope investigated the impact of the leaf-to-fruit ratio on nitrogen (N) partitioning in grapevine following a foliar urea application with the aim of increasing the yeast assimilable nitrogen (YAN) concentration in the must. Methods and results: Foliar urea was applied to field-grown Vitis vinifera L. cv. Chasselas grapevines as part of a split-plot trial with two variable parameters: canopy height (90 or 150 cm) and fruit load (5 or 10 clusters per vine). Foliar application of 20 kg/ha of 15N-labelled urea (10 atom% 15N) was performed at veraison. The isotope labelling method allowed to observe foliar-N partitioning in the plant at harvest. The leaf-to-fruit ratio varied between 0.4 and 1.6 m2/kg, and strongly impacted the N partitioning in the grapevines. Total N and foliar-N partitioning was mainly affected by the variation of canopy height. The YAN concentration varied from 143 to 230 mg/L (+60 %) depending on the leaf area. An oversized canopy (+31 %DW) induced a decrease in the total N concentration of all organs (-17 %), and a decrease in YAN quantity in the must in particular (-53 %). A negative correlation between the N concentration and the carbon isotope discrimination (CID) could be pointed out in a condition of no water restriction (e.g., R2 = 0.65 in the must).Conclusion: An excessive leaf area can induce YAN deficiency in the must. Thus, a balanced leaf-to-fruit ratio – between 1 and 1.2 m2/kg – should be maintained to guarantee grape maturity, YAN accumulation in the must and N recovery in the reserve organs. Significance and impact of the study: The results of this study encourage further research to understand the role of other physiological parameters that affect N partitioning in the grapevine – YAN accumulation in the must in particular – and add new perspectives for N management practices in the vineyard. IntroductionNitrogen (N) represents 1 to 4 % of the dry weight of the vine and plays a key role in the plant development, as a component of proteins, DNA and chlorophyll. The optimization of N fertilisation practices in viticulture is required for quality and sustainability of the production while preserving the environment (Champagnol, 1984). In particular, the concentration of yeast assimilable nitrogen (YAN) in the must at harvest is a relevant parameter used to determine wine quality because both its concentration and composition affect the alcoholic fermentation and the formation of aroma compounds (Rapp and Versini, 1991; Bell and Henschke, 2005). Extreme YAN deficiency can even induce atypical ageing off-flavours in wine (Linsenmeier et al., 2007; Reynard et al., 2011). The YAN concentration is usually enhanced by the addition of diammonium phosphate to the must to improve the fermentation kinetics, but it does not appear to have any beneficial effect on wine aroma (Lorenzini and Vuichard, 2012). Indeed, the main source of aroma precursors in the must are free amino-acids (AA), which represent approximately 80 wt.% of the YAN (Ribéreau-Gayon et al., 2004). Hence, it is necessary to correct the YAN concentration, including the AA concentrations, early in the season through the foliar application of urea to grapevine canopies (Lacroux et al., 2008; Dufourcq et al., 2009; Hannam et al., 2013; Nisbet et al., 2014). However, Spring et al. (2011) observed cases of N-deficient musts produced from vigorous grapevines, despite a high level of N in the soil and an absence of water restriction. Knowing that N supply impacts the development of biomass and N allocation in the vine (Metay et al., 2014), the uptake and subsequent translocation of N are key processes in the development of good wine after the application of foliar fertiliser (Porro et al., 2010). As a consequence, the technical and physiological parameters that can improve the efficiency of foliar urea fertilisation, such as application timing (Conradie, 2005; Lasa et al., 2012), canopy height and yield (Murisier and Zufferey, 1997; Spring et al., 2011), must be optimized to increase the YAN concentration in the must at harvest. The YAN concentration in must was found to be higher when urea was applied to the vine at veraison (Verdenal et al., 2015). Though, very few studies have determined the impact of the leaf-to-fruit ratio on N partitioning with a focus on the YAN accumulation in the must (Kliewer and Ough, 1970; Schreiber et al., 2002; Peyrot des Gachons et al., 2005). The leaf-to-fruit ratio, i.e., the light-exposed leaf area per fruit quantity (m2/kg), is known as an essential parameter in grape growing: on one hand, the leaf area, as a source of nutrients, affects the leaf gas exchanges and the quantity of carbohydrates available through photosynthesis for vegetative growth and grape maturation; on the other hand, the grapes, as a sink of nutrients, affect the quantity of C and N required for their maturation (Murisier and Zufferey, 1997; Morinaga et al., 2003; Kliewer and Dokoozlian, 2005; Etchebarne et al
机译:目的:农用显微镜研究了叶面施用尿素后叶果比对葡萄中氮(N)分配的影响,目的是提高葡萄汁中酵母同化氮(YAN)的浓度。方法和结果:叶面尿素应用于田间种植的葡萄。 Chasselas葡萄树作为分块试验的一部分,具有两个可变参数:树冠高度(90或150 cm)和果实负荷(每个葡萄树5或10簇)。叶面喷施20 kg / ha的15N标记的尿素(10原子%15N)。同位素标记法允许在收获时观察植物中的叶面N分配。叶果比在0.4至1.6平方米/千克之间变化,并强烈影响葡萄藤中的氮分配。总氮和叶面氮的分配主要受冠层高度变化的影响。 YAN浓度从143到230 mg / L(+60%)不等,具体取决于叶片面积。冠层过大(+31%DW)导致所有器官的总N浓度降低(-17%),尤其是葡萄汁中YAN含量降低(-53%)。在无水限制的条件下(例如,R2 = 0.65),可以指出氮浓度与碳同位素歧视(CID)之间呈负相关。 。因此,应保持叶子与果实之间的平衡比率(介于1和1.2平方米/千克之间),以确保葡萄的成熟度,YAN在果园中的积累以及氮在储备器官中的回收。研究的意义和影响:这项研究的结果鼓励进行进一步的研究,以了解影响葡萄中氮分配的其他生理参数的作用,尤其是必不可少的YAN积累,并为葡萄园中的N管理实践提供新的见解。 。简介氮(N)占葡萄干重的1-4%,并作为蛋白质,DNA和叶绿素的成分在植物发育中起关键作用。葡萄栽培中氮肥施用方式的优化是生产质量和可持续发展同时保护环境的要求(Champagnol,1984)。特别是,收获时酒渣中酵母同化氮(YAN)的浓度是用于确定葡萄酒质量的一个相关参数,因为其浓度和成分都会影响酒精发酵和香气化合物的形成(Rapp和Versini,1991; Bell和Henschke,2005年)。极度的YAN缺乏症甚至会引起葡萄酒中的非典型老化变味(Linsenmeier等,2007; Reynard等,2011)。通常通过向发酵液中添加磷酸氢二铵来提高发酵动力学,从而提高YAN的浓度,但似乎对葡萄酒的香气没有任何有益的影响(Lorenzini和Vuichard,2012)。确实,必须的香精前体的主要来源是游离氨基酸(AA),约占YAN的80 wt%(Ribéreau-Gayon等,2004)。因此,有必要通过在葡萄冠层上叶面施用尿素来纠正季节初期的YAN浓度(包括AA浓度)(Lacroux等人,2008; Dufourcq等人,2009; Hannam等人,2013)。 ; Nisbet et al。,2014)。然而,Spring等。 (2011年)观察到,尽管土壤中的氮含量很高且没有水分限制,但从旺盛的葡萄藤中产生的氮缺乏性霉菌的案例。知道氮的供应会影响葡萄藤中生物量的发展和氮的分配(Metay等人,2014),氮的吸收和随后的转运是叶面肥施用后优质葡萄酒发展的关键过程(Porro等人,2014)。 。,2010)。因此,可以提高叶面尿素施肥效率的技术和生理参数,例如施肥时间(Conradie,2005; Lasa等,2012),冠层高度和产量(Murisier和Zufferey,1997; Spring等)。 (2011年),必须对其进行优化以增加收获时葡萄汁中YAN的浓度。当尿素适量施用于葡萄藤时,发现葡萄汁中的YAN浓度较高(Verdenal等人,2015)。但是,很少有研究确定叶果比对N分配的影响,并着重研究了葡萄田中YAN的积累(Kliewer和Ough,1970; Schreiber等人,2002; Peyrot des Gachons等人。 ,2005)。叶果比,即每果实量的光照面积(m2 / kg),是葡萄生长中的重要参数:一方面,叶面积作为养分的来源通过光合作用进行营养生长和葡萄成熟所需的叶片气体交换量和碳水化合物含量;另一方面,葡萄作为养分的吸收源,会影响其成熟所需的碳和氮含量(Murisier和Zufferey,1997; Morinaga等,2003; Kliewer和Dokoozlian,2005; Etchebarne等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号