首页> 外文期刊>Natural Hazards and Earth System Sciences Discussions >Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data
【24h】

Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data

机译:使用WRF-Hydro耦合,台站和卫星数据分析高干旱地区的极端天气事件

获取原文
           

摘要

This study investigates an extreme weather event that impacted theUnited Arab Emirates (UAE) in March?2016, using the Weather Research andForecasting (WRF) model version?3.7.1 coupled with its hydrological modelingextension package (WRF-Hydro). Six-hourly forecasted forcing records at0.5° spatial resolution, obtained from the National Center for Environmental Prediction (NCEP) Global ForecastSystem (GFS), are used to drive the three nested downscaling domains of bothstandalone WRF and coupled WRF–WRF-Hydro configurations for the recentflood-triggering storm. Ground and satellite observations over the UAE areemployed to validate the model results. The model performance was assessedusing precipitation from the Global Precipitation Measurement (GPM) mission (30min, 0.1° product), soil moisturefrom the Advanced Microwave Scanning Radiometer?2 (AMSR2; daily, 0.1° product) and the NOAA Soil Moisture Operational Products System (SMOPS; 6-hourly, 0.25° product), and cloud fraction retrievals from the Moderate Resolution Imaging Spectroradiometer Atmosphere product (MODATM; daily, 5km product). The Pearson correlation coefficient (PCC), relativebias (rBIAS), and root-mean-square error (RMSE) are used as performancemeasures. Results show reductions of 24% and 13% in RMSE and rBIASmeasures, respectively, in precipitation forecasts from the coupledWRF–WRF-Hydro model configuration, when compared to standalone WRF. Thecoupled system also shows improvements in global radiation forecasts, withreductions of 45% and 12% for RMSE and rBIAS, respectively.Moreover, WRF-Hydro was able to simulate the spatial distribution of soilmoisture reasonably well across the study domain when compared to AMSR2-derived soilmoisture estimates, despite a noticeable dry and wet bias in areas where soilmoisture is high and low. Temporal and spatial variabilities of simulated soil moisture compare well to estimates from the NOAA SMOPS product, whichindicates the model's capability to simulate surface drainage. Finally, thecoupled model showed a shallower planetary boundary layer (PBL) compared to the standalone WRFsimulation, which is attributed to the effect of soil moisture feedback. Thedemonstrated improvement, at the local scale, implies that WRF-Hydro couplingmay enhance hydrological and meteorological forecasts in hyper-aridenvironments.
机译:本研究使用天气研究和预报(WRF)模型版本3.7.1以及其水文模型扩展包(WRF-Hydro),调查了2016年3月影响阿拉伯联合酋长国(UAE)的极端天气事件。从国家环境预测中心(NCEP)全球预报系统(GFS)获得的0.5小时空间分辨率的六小时预报强迫记录用于驱动独立WRF和WRF-WRF-Hydro配置的三个嵌套降尺度域为最近引发洪水的风暴。利用阿联酋的地面和卫星观测来验证模型结果。使用全球降水量测量(GPM)任务产生的降水(30分钟,0.1°积),先进微波扫描辐射计2的土壤湿度(AMSR2;每天0.1°积)和NOAA土壤水分操作产品系统(NOAA)评估模型性能。 SMOPS;每6小时0.25°乘积),并从中等分辨率成像光谱仪大气产品(MODATM;每天5公里乘积)中检索云量。皮尔逊相关系数(PCC),相对偏差(rBIAS)和均方根误差(RMSE)用作性能指标。结果表明,与单独的WRF相比,耦合WRF-WRF-Hydro模型配置的降水预测中,RMSE和rBIAS测量值分别降低了24%和13%。耦合系统还显示出全球辐射预报的改进,RMSE和rBIAS分别降低了45%和12%。此外,与AMSR2推导相比,WRF-Hydro能够很好地模拟整个研究领域的土壤水分空间分布。尽管在高和低土壤湿度的地区明显存在干湿偏差,但土壤湿度仍可估算。模拟的土壤水分的时空变化与NOAA SMOPS产品的估算值相比具有很好的对比,表明该模型具有模拟地表排水的能力。最后,与单独的WRF模拟相比,耦合模型显示出较浅的行星边界层(PBL),这归因于土壤水分反馈的影响。在地方范围内已证明的改进表明,WRF-Hydro耦合可以增强高干旱环境中的水文和气象预报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号