...
首页> 外文期刊>Microbial Cell Factories >Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
【24h】

Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae

机译:改变木糖还原酶的辅酶偏好以利于NADH的利用,可以在酿酒酵母的代谢工程菌株中提高木糖的乙醇产量。

获取原文
           

摘要

Background Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR about 170-fold from NADPH in the wild-type to NADH in a Lys274→Arg Asn276→Asp double mutant which in spite of the structural modifications introduced had retained the original catalytic efficiency for reduction of xylose by NADH. This work was carried out to assess physiological consequences in xylose-fermenting S. cerevisiae resulting from a well defined alteration of XR cosubstrate specificity. Results An isogenic pair of yeast strains was derived from S. cerevisiae Cen.PK 113-7D through chromosomal integration of a three-gene cassette that carried a single copy for C. tenuis XR in wild-type or double mutant form, XDH from Galactocandida mastotermitis , and the endogenous xylulose kinase (XK). Overexpression of each gene was under control of the constitutive TDH3 promoter. Measurement of intracellular levels of XR, XDH, and XK activities confirmed the expected phenotypes. The strain harboring the XR double mutant showed 42% enhanced ethanol yield (0.34 g/g) compared to the reference strain harboring wild-type XR during anaerobic bioreactor conversions of xylose (20 g/L). Likewise, the yields of xylitol (0.19 g/g) and glycerol (0.02 g/g) were decreased 52% and 57% respectively in the XR mutant strain. The xylose uptake rate per gram of cell dry weight was identical (0.07 ± 0.02 h-1) in both strains. Conclusion Integration of enzyme and strain engineering to enhance utilization of NADH in the XR-catalyzed conversion of xylose results in notably improved fermentation capabilities of recombinant S. cerevisiae .
机译:背景技术酿酒酵母用于将木糖发酵成燃料乙醇的代谢工程学通常依赖于插入由木糖还原酶(XR)和木糖醇脱氢酶(XDH)组成的异源途径,并通过木糖醇将木糖异构化为木糖。在优先使用NADPH的XR和依赖NAD + 的XDH的催化步骤中氧化还原共底物的不完全回收会导致木糖醇副产物的形成,从而降低乙醇在木糖上的总产率。先前曾采用结构导向定点诱变方法将Lys 274 →Arg Asn 276中假丝酵母XR的辅酶偏好从野生型的NADPH改变为NADH的170倍。 →Asp双重突变体尽管引入了结构修饰,但仍保留了通过NADH还原木糖​​的原始催化效率。进行这项工作以评估由XR共底物特异性的明确改变所引起的木糖发酵酿酒酵母中的生理后果。结果通过三个基因盒的染色体整合从啤酒糖酵母Cen.PK 113-7D衍生出一对同等酵母菌株,该基因盒带有野生型或双突变体形式的单核糖单胞菌XR,来自半乳杆菌的XDH乳腺炎和内源性木酮糖激酶(XK)。每个基因的过表达都受组成型TDH3启动子的控制。细胞内XR,XDH和XK活性水平的测定证实了预期的表型。与在木糖厌氧生物反应器转化过程中携带野生型XR的参考菌株(20 g / L)相比,具有XR双突变体的菌株显示出42%的乙醇产量提高(0.34 g / g)。同样,在XR突变菌株中,木糖醇(0.19 g / g)和甘油(0.02 g / g)的产率分别降低了52%和57%。在两种菌株中,每克细胞干重的木糖摄取率相同(0.07±0.02 h -1 )。结论酶和菌株工程学的整合提高了NADH在XR催化的木糖转化中的利用率,从而显着提高了重组酿酒酵母的发酵能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号