...
首页> 外文期刊>Microbial Cell Factories >Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
【24h】

Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone

机译:工程改造含油酵母解脂耶氏酵母,生产出香气化合物β-紫罗兰酮

获取原文
           

摘要

β-Ionone is a fragrant terpenoid that generates a pleasant floral scent and is used in diverse applications as a cosmetic and flavoring ingredient. A growing consumer desire for natural products has increased the market demand for natural β-ionone. To date, chemical extraction from plants remains the main approach for commercial natural β-ionone production. Unfortunately, changing climate and geopolitical issues can cause instability in the β-ionone supply chain. Microbial fermentation using generally recognized as safe (GRAS) yeast offers an alternative method for producing natural β-ionone. Yarrowia lipolytica is an attractive host due to its oleaginous nature, established genetic tools, and large intercellular pool size of acetyl-CoA (the terpenoid backbone precursor). A push–pull strategy via genome engineering was applied to a Y. lipolytica PO1f derived strain. Heterologous and native genes in the mevalonate pathway were overexpressed to push production to the terpenoid backbone geranylgeranyl pyrophosphate, while the carB and biofunction carRP genes from Mucor circinelloides were introduced to pull flux towards β-carotene (i.e., ionone precursor). Medium tests combined with machine learning based data analysis and 13C metabolite labeling investigated influential nutrients for the β-carotene strain that achieved >?2.5?g/L β-carotene in a rich medium. Further introduction of the carotenoid cleavage dioxygenase 1 (CCD1) from Osmanthus fragrans resulted in the β-ionone production. Utilization of in situ dodecane trapping avoided ionone loss from vaporization (with recovery efficiencies of ~?76%) during fermentation operations, which resulted in titers of 68?mg/L β-ionone in shaking flasks and 380?mg/L in a 2?L fermenter. Both β-carotene medium tests and β-ionone fermentation outcomes indicated the last enzymatic step CCD1 (rather than acetyl-CoA supply) as the key bottleneck. We engineered a GRAS Y. lipolytica platform for sustainable and economical production of the natural aroma β-ionone. Although β-carotene could be produced at high titers by Y. lipolytica, the synthesis of β-ionone was relatively poor, possibly due to low CCD1 activity and non-specific CCD1 cleavage of β-carotene. In addition, both β-carotene and β-ionone strains showed decreased performances after successive sub-cultures. For industrial application, β-ionone fermentation efforts should focus on both CCD enzyme engineering and strain stability improvement.
机译:β-紫罗兰酮是一种芳香的萜类化合物,可产生令人愉悦的花香,并在多种应用中用作化妆品和调味剂。消费者对天然产物的日益增长的需求增加了对天然β-紫罗兰酮的市场需求。迄今为止,从植物中提取化学物质仍是商业化天然β-紫罗兰酮生产的主要方法。不幸的是,不断变化的气候和地缘政治问题可能导致β-紫罗兰酮供应链的不稳定。使用公认的安全(GRAS)酵母进行微生物发酵为生产天然β-紫罗兰酮提供了另一种方法。解脂耶氏酵母(Yarrowia lipolytica)是诱人的宿主,因为其具有油质性质,已建立的遗传工具以及乙酰辅酶A(萜类骨架前体)的大细胞间库大小。通过基因组工程的推挽策略被应用于解脂耶氏酵母PO1f衍生菌株。甲羟戊酸途径中的异源和天然基因被过表达以将产生的产物推向萜烯骨架的香叶基香叶基香叶基焦磷酸中,而来自Mucor circinelloides的carB和生物功能carRP基因被引入以将通量引向β-胡萝卜素(即紫罗兰酮前体)。培养基测试与基于机器学习的数据分析和13C代谢物标记相结合,研究了在丰富培养基中对β-胡萝卜素菌株的影响养分,该菌株在> 2.5?g / L的条件下达到了≥2.5?g / L。桂花中类胡萝卜素裂解双加氧酶1(CCD1)的进一步引入导致β-紫罗兰酮的产生。利用原位十二烷捕集避免了发酵操作过程中蒸发导致紫罗兰酮损失(〜76%的回收效率),从而在摇瓶中产生68?mg / Lβ-紫罗兰酮的滴度,并在2次中产生380?mg / L的滴定度。 L发酵罐。 β-胡萝卜素培养基测试和β-紫罗兰酮发酵结果均表明最后的酶促步骤CCD1(而不是乙酰辅酶A的供应)是关键瓶颈。我们设计了GRAS解脂耶氏酵母平台,以可持续,经济地生产天然香气β-紫罗兰酮。尽管解脂耶氏酵母可以高滴度生产β-胡萝卜素,但β-紫罗兰酮的合成相对较差,这可能是由于CCD1活性低和CCD1对胡萝卜素的非特异性裂解所致。另外,连续继代培养后,β-胡萝卜素和β-紫罗兰酮菌株均表现出降低的性能。对于工业应用,β-紫罗兰酮的发酵应集中在CCD酶工程和菌株稳定性的提高上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号