首页> 外文期刊>Minerals >Experimental Study of Pyrite Oxidation at 100 °C: Implications for Deep Geological Radwaste Repository in Claystone
【24h】

Experimental Study of Pyrite Oxidation at 100 °C: Implications for Deep Geological Radwaste Repository in Claystone

机译:黄铁矿在100°C氧化的实验研究:对粘土中深部地质废物处置库的启示

获取原文
           

摘要

The oxidation of pyrite is one of the near field processes of the chemical evolution of clay rock planned to host a deep geological radioactive waste repository during operation. Indeed, this process can lead to transitory acidic conditions in the medium (i.e., production of sulphuric acid, carbonic acid) which may influence the corrosion kinetics of the carbon steel components of some disposal cells. In order to improve the geochemical modelling of the long-term disposal, the oxidation of pyrite in contact with clays and carbonates at 100 °C must be evaluated. In this study, special attention was paid to the pyrite oxidation rate thanks to an original experimental set-up, involving several pyrite/mineral mixtures and a reactor coupled to a micro gas chromatograph (P O2 and P CO2 monitoring). Although thermodynamic modelling expects that hematite is the most stable phase in a pure pyrite heated system (low pH), experiments show the formation of native sulfur as an intermediate product of the reaction. In the presence of calcite, the pH is neutralized and drives the lower reactivity of pyrite in the absence of native sulfur. The addition of clay phases or other detrital silicates from the claystone had no impact on pyrite oxidation rate. The discrepancies between experiments and thermodynamic modelling are explained by kinetic effects. Two laws were deduced at 100 °C. The first concerns a pure pyrite system, with the following law: r P y = ? 10 ? 4.8 · P O 2 0.5 · t ? 0.5 . The second concerns a pyrite/carbonates system: r P y + C a = ? 10 ? 5.1 · P O 2 0.5 · t ? 0.5 where P O 2 corresponds to the partial pressure of O 2 (in bar) and t is time in seconds. Different mechanisms are proposed to explain the evolution with time of the O 2 consumption during pyrite oxidation: (i) decrease of the specific or reactive surface area after oxidation of fine grains of pyrite, (ii) decrease of O 2 pressure, (iii) growing up of secondary minerals (Fe-oxides or anhydrite in the presence of calcium in the system) on the surface of pyrite limiting the access of O 2 to the fresh surface of pyrite, and (iv) change in the pH of the solution.
机译:黄铁矿的氧化是粘土岩石化学演化的近场过程之一,该粘土岩石计划在运行期间容纳一个深部地质放射性废物处置库。实际上,该过程可导致介质中短暂的酸性条件(即产生硫酸,碳酸),这可能会影响某些处置池中碳钢部件的腐蚀动力学。为了改善长期处置的地球化学模型,必须评估在100°C下与粘土和碳酸盐接触的黄铁矿的氧化。在这项研究中,得益于原始的实验装置,黄铁矿的氧化速率得到了特别的关注,其中涉及几种黄铁矿/矿物混合物以及一个与微型气相色谱仪耦合的反应器(监测P O2和P CO2)。尽管热力学模型预期赤铁矿是纯黄铁矿加热系统(低pH)中最稳定的相,但实验表明天然硫的形成是反应的中间产物。在方解石的存在下,pH被中和并在缺乏天然硫的情况下降低了黄铁矿的反应性。从粘土中加入粘土相或其他碎屑硅酸盐对黄铁矿的氧化速率没有影响。实验和热力学模型之间的差异由动力学效应解释。在100°C下推导了两个定律。第一个涉及纯黄铁矿系统,具有以下定律:r P y =? 10? 4.8·P O 2 0.5·t 0.5第二个是黄铁矿/碳酸盐体系:r P y + C a =? 10? 5.1·P O 2 0.5·t 0.5,其中P O 2对应于O 2的分压(以巴为单位),t是以秒为单位的时间。提出了不同的机理来解释黄铁矿氧化过程中O 2消耗随时间的演变:(i)黄铁矿细颗粒氧化后比表面积或反应表面积的降低;(ii)O 2压力的降低;(iii)在黄铁矿表面上生长次生矿物(在系统中存在钙时,Fe-氧化物或无水石膏)限制了O 2进入黄铁矿的新鲜表面,以及(iv)溶液pH的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号