首页> 外文期刊>Frontiers in Physics >Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations
【24h】

Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations

机译:基于物理的高保真数值模拟的自适应等离子体模型

获取原文
           

摘要

A physics-based-adaptive plasma model and an appropriate computational algorithm are developed to numerically simulate plasma phenomena in high fidelity. %The physics-based-adaptive plasma model is dynamically refined based on the local conditions to provide uniform model fidelity throughout the domain at all times of the simulation. The physics-based-adaptive plasma model can be dynamically refined based on the local plasma conditions to increase model fidelity uniformity throughout the domain at all times of the simulation. %The adaptive plasma model uses continuum representations of the plasma, which include a kinetic Boltzmann model for the highest fidelity, multi-fluid plasma models (13N-moment and 5$N$-moment), and single-fluid MHD models for the lowest fidelity. The adaptive plasma model uses continuum representations of the plasma, which include a kinetic Vlasov model for the highest fidelity, multi-fluid 5$N$-moment plasma model, and single-fluid MHD model for the lowest fidelity. The models include evolution equations for the electromagnetic fields, electron species, ion species, and neutral species. A nodal discontinuous Galerkin finite element method is implemented and is coupled with various implicit and explicit Runge-Kutta methods. Various model coupling techniques are investigated for a 5$N$-moment multi-fluid models with a Vlasov-Maxwell model, and a 5$N$-moment two-fluid model with an MHD model. Continuum plasma models using consistent normalizations and identical spatial representations provide straightforward and accurate coupling between the models. %The solution approach offers the potential for high-order accuracy and computational efficiency. The solution approach offers high-order accuracy and computational efficiency. Target compute platforms are heterogeneous computer architectures using a compute model that minimizes data movement.
机译:开发了基于物理的自适应等离子体模型和适当的计算算法,以高保真度数值模​​拟等离子体现象。基于物理条件的自适应等离子体模型会根据局部条件进行动态优化,以在整个模拟过程中始终在整个域中提供统一的模型保真度。基于物理的自适应等离子体模型可以基于局部等离子体条件进行动态优化,以在整个模拟过程中提高整个域的模型保真度均匀性。自适应血浆模型使用血浆的连续表示形式,其中包括最高保真度的动力学Boltzmann模型,多流体血浆模型(13N矩和5 $ N $矩)以及单流体MHD模型(最低)保真。自适应血浆模型使用血浆的连续体表示形式,其中包括最高保真度的动力学Vlasov模型,多流体5 $ N $矩血浆模型和最低保真度的单流体MHD模型。这些模型包括电磁场,电子物种,离子物种和中性物种的演化方程。实现了节点不连续Galerkin有限元方法,并将其与各种隐式和显式Runge-Kutta方法耦合。对于具有Vlasov-Maxwell模型的5 $ N $矩多流体模型和具有MHD模型的5 $ N $矩两流体模型,研究了各种模型耦合技术。使用一致的归一化和相同的空间表示的连续体血浆模型在模型之间提供了直接而准确的耦合。解决方案方法提供了高阶精度和计算效率的潜力。该解决方案提供了高阶精度和计算效率。目标计算平台是使用计算模型的异构计算机体系结构,可最大程度地减少数据移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号