首页> 外文期刊>Frontiers in Physics >Imaging spin dynamics on the nanoscale using X-Ray microscopy
【24h】

Imaging spin dynamics on the nanoscale using X-Ray microscopy

机译:使用X射线显微镜在纳米尺度上成像自旋动力学

获取原文
           

摘要

The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.
机译:通过扫描透射X射线显微镜(STXM),结合磁性(XMCD)对比度和大约25 nm的横向分辨率以及70 ps的时间分辨率,研究了出现的磁性准粒子(例如涡旋,畴壁和气泡)的动力学。通过对涡旋陀螺仪的亚GHz激发(通过交流磁场或自旋传递扭矩)观察到的涡旋核反转,实现了对磁涡旋动力学理解的实质性进展。涡旋核心反转的基本切换方案是涡旋-反涡旋对的生成。通过激发具有(multi-GHz)旋转磁场或正交单极场脉冲的x和y方向的方位自旋波模式,可以使涡旋核更快地逆转,持续时间低至45 ps。以这种方式,仅在切换时间大大低于100 ps的情况下,才能实现单向涡旋芯反转至涡旋芯“下降”或“升起”状态。相互作用的涡旋耦合模式模拟晶体特性。各个涡旋振荡器确定集合体的特性,其中回旋模式表示基本激发。通过自组织状态的形成,我们研究了不同的涡旋核极化构型,并在扩展的Thiele模型中理解了这些本征模。绘制了与光子晶体的类比。奥斯特场和自旋极化电流用于激发畴壁和磁泡的动力学。从所测量的畴壁位移的相位和幅度,我们推导出非绝热自旋传递扭矩的大小。对于传感应用,研究了畴壁的位移,并发现了畴壁速度与自旋结构之间的直接相关性。最后,利用垂直场脉冲对多个畴壁的同步位移被证明是磁存储和逻辑应用的一种可能的范式转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号