首页> 外文期刊>Frontiers in Neuroscience >EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks
【24h】

EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

机译:基于脑电图的皮层电流密度和动态因果连通性的量化在执行BCI监控的认知任务的受试者中得到了概括

获取原文
           

摘要

Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI.
机译:大脑区域之间动态因果相互作用的量化是进行实验和转化神经科学应用研究和开发的重要组成部分。此外,与人脑区域相比,在脑机接口(BCI)应用程序中具有动态因果连通性的皮质网络提供了与行为有关的脑部状态的更全面视图。但是,由于目前的脑电图(EEG)信号分析技术在跨受试者可靠地定位来源方面的能力有限,因此难以在受试者之间推广皮层网络动力学模型。我们提出了一种算法和计算框架,用于识别跨主题的皮质网络,其中在用户选择的感兴趣皮质区域(ROI)之间建立了动态​​因果联系。我们通过使用“伸手可及的距离到空间目标”认知任务(由10位惯用右手的人执行)来证明所提出框架的优势。通过使用(EEG)测量皮质活动,应用独立的组件聚类法将皮质ROI识别为网络节点,使用皮质约束的低分辨率电磁脑层析成像(cLORETA)估算皮质电流密度,多元自回归( MVAR)对来自每个ROI的代表性皮质活动信号进行建模,并使用短时直接定向转移函数(SdDTF)量化已识别ROI之间的动态因果关系。由此产生的皮层网络及其节点之间的计算的因果动力学表现出生理上合理的行为,与文献中报道的过去结果一致。结果在生理上的合理性增强了框架在可靠捕获复杂大脑功能方面的适用性,这是诊断和BCI等应用程序所必需的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号