...
首页> 外文期刊>Frontiers in Neurology >Editorial: Karolinska Institutet 200-Year Anniversary Symposium on Injuries to the Spinal Cord and Peripheral Nervous System—An Update on Recent Advances in Regenerative Neuroscience
【24h】

Editorial: Karolinska Institutet 200-Year Anniversary Symposium on Injuries to the Spinal Cord and Peripheral Nervous System—An Update on Recent Advances in Regenerative Neuroscience

机译:社论:Karolinska Institutet纪念脊髓和周围神经系统损伤200周年座谈会-再生神经科学的最新进展

获取原文
           

摘要

Editorial on the Research Topic Karolinska Institutet 200-Year Anniversary Symposium on Injuries to the Spinal Cord and Peripheral Nervous System—An Update on Recent Advances in Regenerative Neuroscience The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nerves in 2010 gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury fields, covering topics from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation ( Skold et al. ). The present Research Topic recognizes the remarkable advances in regenerative neuroscience that have occurred over the past years.In this Research Topic, we are pleased to present contributions from basic laboratory studies to new clinical strategies in the spirit of highlighting advancements in regenerative neuroscience and functional repair of traumatic injuries to the spinal cord and peripheral nerves.As the main conduits of information from the periphery to the brain and vice versa, the spinal cord and the spinal nerves are of fundamental importance. The location of spinal motor and sensory neurons within both the central and peripheral nervous systems, with profoundly different responses to nerve injury, make these neurons especially interesting for understanding fundamental aspects of nerve injury and regeneration.In injuries to the spinal cord, the primary injury results in damage of cells, extracellular matrix, and vasculature, that in turn give rise to a secondary injury cascade with consequent ischemia, inflammation, and death of glial cells and neurons. Formation of glial scars and cystic cavities are the result of posttraumatic changes in the structural architecture of the posttraumatic spinal cord which are of importance for the capacity of regrowth of axons, the poor recovery potential and resulting neurological capacity.The glial scar is formed in a dynamic process after injury to the spinal cord and its potentially inhibitory as well as supportive effect on nerve regrowth has been studied widely ( 1 – 4 ).In the zone around the lesion, activated astrocytes, microglia, invading macrophages, and fibroblast are arranged together with secreted extracellular matrix molecules to form the glial scar. Myelin forming oligodendrocytes are commonly lost after spinal cord injuries leaving axons demyelinated ( 5 ) while surviving and new oligodendrocytes may not contribute to effective functional remyelination ( 6 , 7 ). On the other hand, it is well known that oligodendrocyte progenitor cells, the so-called NG2 cells, do migrate to the spinal cord lesion and probably play a multifold function therein; secreting nerve growth inhibitory ECM molecules (chondroitin sulfate proteoglycans) and differentiating to myelin-producing oligodendrocytes and even astrocytes, although much of their function remains elusive. In the contribution to this Research Topic by Hackett and Lee , we do get a comprehensive review on NG2 cells and their role in health and disease. Hackett et al. point out that NG2 cells are, besides astrocytes, one major part of the glial scar. However, unlike astrocytes, they can differentiate into oligodendrocytes, astrocytes, and perhaps even Schwann cells and, thus, be a target in many aspects of spinal cord injury and repair.Even though lack of nerve regeneration, or at least successful nerve regeneration, is the rule after injuries to the central nervous system (CNS), endogenous mechanisms and exceptions to this dogma of unsuccessful nerve regeneration do exist and hold promise of a wider understanding of how, when, and where nerve regeneration can occur and be supported. Anatomical and synaptic plasticity ( 8 ) as well as activation and development of neural precursor cells in to neurons and glia ( 9 ) after spinal cord injury are endogenous reparative attempts that need further exploration.One interesting example of successful CNS nerve regeneration is the avulsion-replantation injury of spinal nerves ( Carlstedt ). When spinal roots, typically in high velocity traffic accidents, are torn from the spinal cord, this results in an interruption of the local transverse segmental spinal cord motor and sensory fibers. This will lead to dying back of the centrally located axon and, eventually, the motor neuron in the ventral horn of the spinal cord. However, if the avulsed spinal root is replanted to the spinal cord, survival of motor neurons and successful regeneration of axons from the motor neurons within the CNS will occur ( 10 ), which has resulted in a surgical method to restore function after this kind of longitudinal spinal cord injury ( 11 ).In his perspectives article, Carlstedt elaborates on recent findings regarding the return of sensory function. Replantation of avulsed spinal roots leads to useful motor function if the procedure is performed before 1?month after injury ( 12 ), but sensory recovery cannot be achieved by replanting avulsed do
机译:关于研究主题的社论卡罗林斯卡学院200周年脊髓与周围神经系统损伤研讨会-再生神经科学最新进展的最新进展卡罗林斯卡学院200周年研讨会关于2010年脊髓和周围神经损伤收集了脊髓,脊髓神经和周围神经损伤领域的专业知识,涵盖了从神经再生的分子前提条件到神经修复和康复的临床方法等主题(Skold等)。本研究主题是对过去几年中再生神经科学领域取得的显着进展的认可。在本研究主题中,我们将本着突出再生神经科学和功能修复研究的精神,高兴地介绍基础实验室研究对新临床策略的贡献。脊髓和脊髓神经作为从外周到大脑以及反之亦然的主要信息传递渠道,对脊髓和周围神经具有创伤性。脊髓运动和感觉神经元在中枢神经系统和周围神经系统中的位置,对神经损伤的反应差异很大,这使得这些神经元对于理解神经损伤和再生的基本方面特别有趣。导致细胞,细胞外基质和脉管系统受损,继而引起继发性损伤级联反应,继而导致缺血,炎症以及神经胶质细胞和神经元死亡。胶质瘢痕和囊性腔的形成是创伤后脊髓结构结构的创伤后变化的结果,这对于轴突的再生能力,较差的恢复潜力和由此产生的神经功能具有重要意义。脊髓损伤后的动态过程及其对神经再生的潜在抑制和支持作用已被广泛研究(1-4)。在病变周围区域,活化的星形胶质细胞,小胶质细胞,侵袭性巨噬细胞和成纤维细胞排列在一起与分泌的细胞外基质分子形成神经胶质瘢痕。脊髓损伤后,形成髓鞘的少突胶质细胞通常会丢失,使轴突脱髓鞘(5),而存活下来,新的少突胶质细胞可能无助于有效的功能性髓鞘再生(6、7)。另一方面,众所周知,少突胶质细胞祖细胞,即所谓的NG2细胞,确实迁移到脊髓病变中并可能在其中发挥多重功能。分泌抑制神经生长的ECM分子(硫酸软骨素蛋白聚糖)并分化为产生髓磷脂的少突胶质细胞,甚至分化为星形胶质细胞,尽管它们的许多功能仍然难以捉摸。在Hackett和Lee对这个研究主题的贡献中,我们确实对NG2细胞及其在健康和疾病中的作用进行了全面的综述。 Hackett等。指出除了星形胶质细胞外,NG2细胞也是神经胶质瘢痕的主要组成部分。然而,与星形胶质细胞不同,它们可以分化为少突胶质细胞,星形胶质细胞,甚至可能是雪旺氏细胞,因此成为脊髓损伤和修复的许多方面的靶标。即使缺乏神经再生或至少成功的神经再生,也是确实存在中枢神经系统(CNS)受伤后的规则,这种内源性机制以及这种神经再生不成功的教条的例外情况,并有望使人们对神经再生的方式,时间和地点有更广泛的了解并得到支持。解剖和突触可塑性(8)以及脊髓损伤后神经前体细胞向神经元和神经胶质的激活和发育(9)是内源性修复尝试,需要进一步探索。中枢神经系统神经再生成功的一个有趣的例子是撕脱-脊神经再植损伤(Carlstedt)。当通常在高速交通事故中发生的脊髓根部从脊髓撕裂时,这会导致局部横向节段性脊髓运动和感觉纤维中断。这将导致位于中心的轴突以及最终在脊髓腹角的运动神经元的死亡。然而,如果将撕脱的脊椎根重新植入脊髓,运动神经元的存活和中枢神经系统内运动神经元轴突的成功再生(10),这导致了通过手术方法在这种情况下恢复功能。纵向脊髓损伤(11).Carlstedt在他的观点文章中详细阐述了有关感觉功能恢复的最新发现。如果在受伤后1个月之前进行手术,则再行撕脱的脊椎根再植会产生有用的运动功能(12),但是通过再行撕脱的椎体再植不能达到感觉恢复

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号