...
首页> 外文期刊>Frontiers in Aging Neuroscience >Editorial: Pathophysiological Mechanisms of Sarcopenia in Aging and in Muscular Dystrophy: A Translational Approach
【24h】

Editorial: Pathophysiological Mechanisms of Sarcopenia in Aging and in Muscular Dystrophy: A Translational Approach

机译:社论:肌少症在衰老和肌肉营养不良中的病理生理机制:一种转化方法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sarcopenia and muscular dystrophy are both characterized by the loss of muscle mass and increased intramuscular fibrosis. The two conditions also share several pathophysiological mechanisms, including mitochondrial dysfunction, increased apoptosis, abnormal regulation of autophagy, decline in satellite cell function, increased generation of reactive oxygen species, and alterations of signaling and stress response pathways. Basic science researchers and clinicians working in the areas of sarcopenia and muscular dystrophy in human and animal models contributed to this research topic (Alway et al., 2014 ; Calvani et al., 2014 ; Cesari et al., 2014 ; De Palma et al., 2014 ; Gattazzo et al., 2014 ; Harris-Love et al., 2014 ; Hepple, 2014 ; Holland et al., 2014 ; Holmberg et al., 2014 ; Jungbluth and Gautel, 2014 ; Kern et al., 2014 ; La Rovere et al., 2014 ; Lim et al., 2014 ; Malatesta et al., 2014 ; Marzetti et al., 2014 ; Merlini et al., 2014 ; Palmio and Udd, 2014 ; Pozzobon et al., 2014 ; Raz and Raz, 2014 ; Rudolf et al., 2014 ; Sabatelli et al., 2014 ; Sakuma et al., 2014 ; Sanchis-Gomar et al., 2014 ; Tamaki et al., 2014 ; Toni et al., 2014 ; Zulian et al., 2014 ; Krause, 2015 ). The aim of this cross-fertilization was to accelerate our understanding of the mechanisms involved in aging and dystrophic sarcopenia and to explore the therapeutic potential of various intervention modalities. Since its first “official” appreciation back in 1989 (Rosenberg, 1989 ), sarcopenia has attracted great research interest. The intimate relationship between muscle loss and advancing age, evident across multiple species, has led researchers to consider sarcopenia as a paradigm for exploring the aging process as a whole. Sarcopenia is indeed envisioned as a biomarker of aging, able to distinguish, at the clinical level, biological from chronological age (Fisher, 2004 ). This view is supported by the association reported between sarcopenia and the length of telomeres in peripheral blood mononuclear cells (PBMCs), a popular biological marker of senescence (Marzetti et al., 2014 ). This relationship seemed to be driven mainly by the muscle mass, which suggests the existence of a common pathogenic basis for muscle atrophy and telomere attrition. No significant association was found between PBMC telomere length and muscle strength or function parameters, pointing at distinct pathogenic mechanisms underlying the quantitative and qualitative dimensions of sarcopenia. Decreased number and impaired function of satellite cells, the major stem cell population responsible for skeletal muscle regeneration during adulthood, are considered to be major the mechanisms contributing to sarcopenia (Chakkalakal and Brack, 2012 ). Along with changes in systemic factors and the environmental cues provided by satellite cells, oxidative stress that characterizes the aged muscle contributes to impairing satellite cells responses to exercise, disuse, and rehabilitation. Some nutritional intervention may improve satellite cell function in aged muscles; however, the effect of nutraceuticals on satellite cell function in the context of sarcopenia is not yet well established. Alway et al. ( 2014 ) provided an overview on the contribution of satellite cell dysfunction to sarcopenia. The authors also reviewed data from preclinical studies showing that the administration of specific nutraceuticals (resveratrol, green tea catechins, and β-hydroxy-β-methylbutyrate) may improve satellite cell function, thereby mitigating sarcopenia and promoting muscle recovery after disuse. Most studies aimed at testing potential therapeutic approaches targeting satellite cells in muscle diseases have been conducted in small mammalian models. Though, our knowledge of muscle regeneration in large animal models, such as dogs, remains relatively limited. La Rovere et al. ( 2014 ) investigated the myogenic potential of satellite cells isolated from somite- and presomite-derived muscles of young and aged dogs, as well as from Golden Retrievers affected by muscular dystrophy. Satellite cells obtained from the two canine sources showed different proliferation and differentiation rates. Indeed, those isolated from presomitic-derived muscle showed higher telomerase activity and stronger stem cell potential, whereas satellite cells obtained from somitic-derived muscle expressed early and late myogenic markers, resulting in more efficient cell differentiation. Interestingly, expression profiling of muscle-specific miRNAs revealed a unique epigenetic signature in Golden Retriever muscular dystrophy, suggesting that miR-206 might represent a potential target for therapy. Satellite cell dysfunction is involved in collagen VI-related myopathies. Collagen VI is an extracellular matrix protein, essential for muscle homeostasis (Bonaldo et al., 1998 ). Mutations in the gene encoding for collagen VI cause different forms of inherited myopathies and congenital muscular dystrophies. Studies car
机译:肌肉减少症和肌肉营养不良症均以肌肉质量下降和肌内纤维化增加为特征。这两种情况也共有几种病理生理机制,包括线粒体功能障碍,细胞凋亡增加,自噬异常调节,卫星细胞功能下降,活性氧生成增加以及信号传导和应激反应途径的改变。在人类和动物模型中的肌肉减少症和肌肉营养不良领域工作的基础科学研究人员和临床医生对此研究主题做出了贡献(Alway等人,2014; Calvani等人,2014; Cesari等人,2014; De Palma等人,2014; Gattazzo等,2014; Harris-Love等,2014; Hepple,2014; Holland等,2014; Holmberg等,2014; Jungbluth and Gautel,2014; Kern等,2014 ; La Rovere等,2014; Lim等,2014; Malatesta等,2014; Marzetti等,2014; Merlini等,2014; Palmio和Udd,2014; Pozzobon等,2014; Raz和Raz,2014年; Rudolf等人,2014年; Sabatelli等人,2014年; Sakuma等人,2014年; Sanchis-Gomar等人,2014年; Tamaki等人,2014年; Toni等人,2014年; Zulian等,2014; Krause,2015)。这种交叉受精的目的是增进我们对衰老和营养不良性肌肉减少症所涉及的机制的了解,并探索各种干预方式的治疗潜力。自1989年首次出现“正式”欣赏以来(Rosenberg,1989),肌肉减少症引起了极大的研究兴趣。肌肉丢失与年龄增长之间存在密切的联系,这一点在多个物种中都显而易见,这使得研究人员考虑将肌肉减少症作为探索整个衰老过程的范例。肌肉减少症确实被设想为衰老的生物标志物,能够在临床水平上区分生物学和按时间顺序的年龄(Fisher,2004)。肌肉减少症与外周血单核细胞(PBMC)端粒长度之间的关联报道支持了这一观点,外周血单核细胞是一种常见的衰老生物学标记(Marzetti等,2014)。这种关系似乎主要由肌肉质量驱动,这表明存在肌肉萎缩和端粒磨损的常见病因基础。 PBMC端粒长度与肌肉力量或功能参数之间未发现显着关联,指出肌肉少肌症的定量和定性维度所依据的独特致病机制。卫星细胞的数量减少和功能受损是成年期间负责骨骼肌再生的主要干细胞,被认为是导致少肌症的主要机制(Chakkalakal和Brack,2012年)。伴随着系统因素的变化和卫星细胞提供的环境提示,表征衰老肌肉的氧化应激会削弱卫星细胞对运动,废弃和康复的反应。一些营养干预可以改善衰老肌肉中的卫星细胞功能。然而,在肌肉减少症的背景下,营养保健品对卫星细胞功能的影响尚不十分清楚。 Alway等。 (2014)概述了卫星细胞功能障碍对少肌症的贡献。作者还回顾了临床前研究的数据,这些数据表明特定营养品(白藜芦醇,绿茶儿茶素和β-羟基-β-甲基丁酸)的使用可能会改善卫星细胞的功能,从而减轻肌肉减少症并在停用后促进肌肉恢复。大多数旨在测试针对肌肉疾病中卫星细胞的潜在治疗方法的研究已在小型哺乳动物模型中进行。但是,我们在大型动物模型(例如狗)中对肌肉再生的知识仍然相对有限。 La Rovere等。 (2014)研究了从成年犬和成年犬的体节和早体起源的肌肉以及受肌肉营养不良影响的金毛寻回犬分离的卫星细胞的成肌潜力。从这两种犬源获得的卫星细胞显示出不同的增殖和分化速率。的确,从早搏来源的肌肉中分离出的那些细胞显示出更高的端粒酶活性和更强的干细胞潜能,而从阔体来源的肌肉中获得的卫星细胞则表达早期和晚期肌源性标志物,从而导致更有效的细胞分化。有趣的是,肌肉特异性miRNA的表达谱揭示了金毛猎犬肌肉营养不良的独特表观遗传学特征,表明miR-206可能代表了潜在的治疗靶标。卫星细胞功能异常与胶原VI相关的肌病有关。胶原VI是一种细胞外基质蛋白,对于肌肉稳态是必不可少的(Bonaldo等,1998)。编码胶原VI的基因中的突变会导致不同形式的遗传性肌病和先天性肌营养不良。书房车

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号