...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells
【24h】

Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells

机译:先进的微流控设备,用于单个贴壁细胞的循环压缩

获取原文
           

摘要

Cells in our body experience different types of stress including compression, tension, and shear. It has been shown that some cells experience permanent plastic deformation after a mechanical tensile load was removed. However, it was unclear whether cells are plastically deformed after repetitive compressive loading and unloading. There have been few tools available to exert cyclic compression at the single cell level. To address technical challenges found in a previous microfluidic compression device, we developed a new single-cell microfluidic compression device that combines an elastomeric membrane block geometry to ensure a flat contact surface and microcontact printing to confine cell spreading within cell trapping chambers. The design of the block geometry inside the compression chamber was optimized by using computational simulations. Additionally, we have implemented step-wise pneumatically controlled cell trapping to allow more compression chambers to be incorporated while minimizing mechanical perturbation on trapped cells. Using breast epithelial MCF10A cells stably expressing a fluorescent actin marker, we successfully demonstrated the new device design by separately trapping single cells in different chambers, confining cell spreading on microcontact printed islands, and applying cyclic planar compression onto single cells. We found that there is no permanent deformation after a 0.5 Hz cyclic compressive load for 6 minutes was removed. Overall, the development of the single-cell compression microfluidic device opens up new opportunities in mechanobiology and cell mechanics studies.
机译:我们体内的细胞会经历不同类型的压力,包括压缩,拉伸和剪切。已经表明,一些细胞在去除机械拉伸载荷后会经历永久的塑性变形。然而,不清楚细胞在重复压缩加载和卸载后是否发生塑性变形。很少有工具可以在单个单元格级别上执行循环压缩。为了解决以前的微流体压缩设备中遇到的技术挑战,我们开发了一种新的单细胞微流体压缩设备,该设备结合了弹性体膜块的几何形状以确保平坦的接触表面和微接触印刷,从而将细胞限制在细胞捕获室内。通过使用计算模拟优化了压缩室内的块几何设计。此外,我们已实现了逐步气动控制的细胞捕获,以允许合并更多的压缩腔,同时最大程度地减少了对捕获细胞的机械干扰。使用稳定表达荧光肌动蛋白标记物的乳腺上皮MCF10A细胞,我们成功地展示了新的设备设计,方法是将单个细胞分别捕获在不同的腔室中,限制细胞散布在微接触印刷岛上,并对单个细胞进行循环平面压缩。我们发现去除0.5 Hz的循环压缩载荷6分钟后没有永久变形。总的来说,单细胞压缩微流体装置的发展为力学生物学和细胞力学研究提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号