...
首页> 外文期刊>Frontiers in Microbiology >Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device
【24h】

Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device

机译:氧张力和核黄素梯度协同调节基于水凝胶的微流控装置揭示的<斜体>希瓦氏菌 MR-1的迁移。

获取原文
           

摘要

Shewanella oneidensis is a model bacterial strain for studies of bioelectrochemical systems (BESs). It has two extracellular electron transfer pathways: (1) shuttling electrons via an excreted mediator riboflavin; and (2) direct contact between the c -type cytochromes at the cell membrane and the electrode. Despite the extensive use of S. oneidensis in BESs such as microbial fuel cells and biosensors, many basic microbiology questions about S. oneidensis in the context of BES remain unanswered. Here, we present studies of motility and chemotaxis of S. oneidensis under well controlled concentration gradients of two electron acceptors, oxygen and oxidized form of riboflavin (flavin+), using a newly developed microfluidic platform. Experimental results demonstrate that either oxygen or flavin+ is a chemoattractant to S. oneidensis. The chemotactic tendency of S. oneidensis in a flavin+ concentration gradient is significantly enhanced in an anaerobic in contrast to an aerobic condition. Furthermore, either a low oxygen tension or a high flavin+ concentration considerably enhances the speed of S. oneidensis. This work presents a robust microfluidic platform for generating oxygen and/or flavin+ gradients in an aqueous environment, and demonstrates that two important electron acceptors, oxygen and oxidized riboflavin, cooperatively regulate S. oneidensis migration patterns. The microfluidic tools presented as well as the knowledge gained in this work can be used to guide the future design of BESs for efficient electron production.
机译:希瓦氏菌是一种用于研究生物电化学系统(BESs)的模型细菌菌株。它具有两种细胞外电子转移途径:(1)通过排泄的核黄素介导穿梭电子; (2)细胞膜上的c型细胞色素与电极直接接触。尽管在诸如微生物燃料电池和生物传感器的BES中广泛使用了沙门氏菌,但是在BES的背景下,关于沙门氏菌的许多基本的微生物学问题仍未得到解答。在这里,我们使用新开发的微流控平台,在两个电子受体,氧和核黄素(黄素+)的氧化形式的良好控制的浓度梯度下,对沙门氏菌的运动性和趋化性进行研究。实验结果表明,氧气或黄素+是S. oneidensis的化学吸引剂。与有氧条件相比,厌氧条件下沙丁鱼在黄素+浓度梯度中的趋化趋势显着增强。此外,低氧张力或高黄素+浓度都可显着提高oneidensis的速度。这项工作提供了一个健壮的微流体平台,可在水性环境中产生氧气和/或黄素+梯度,并证明了两个重要的电子受体,氧气和氧化核黄素,可共同调节拟南芥的迁移模式。提出的微流体工具以及在这项工作中获得的知识可用于指导BES的未来设计,以实现高效的电子生产。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号